Lebensmittelchemiker untersuchen Nahrungsbestandteile auf ihren Gesundheitseffekt

Und eine ganze Industrie arbeitet daran, die dafür verantwortlichen Substanzen zu isolieren und zum Beispiel in Form von Nahrungsergänzungsmitteln den Kunden zum Kauf anzupreisen. Ob eine bestimmte Gruppe dieser Substanzen tatsächlich für jene gesundheitsfördernden Effekte verantwortlich ist, die ihnen zugeschrieben werden, untersuchen jetzt Lebensmittelchemiker der Universität Würzburg gemeinsam mit Kollegen aus Münster, Medizinern aus Regensburg und der Industrie.

Immer wenn Pflanzen wunderschön rot, violett, blau oder blauschwarz leuchten, sind so genannte Anthocyane und Procyanidine im Spiel. Die Farbstoffe finden sich beispielsweise in Beeren wie Heidelbeeren, schwarzen Johannisbeeren und roten Weintrauben, aber auch im Rotkohl und im roten Häutchen der Erdnuss. Unter anderem schützen sie die Gewebe vor dem UV-Licht der Sonne und binden so genannte „freie Radikale“ – Molekülreste, die das Gewebe angreifen und schädigen können.

Eine ähnliche Wirkung sollen sie angeblich auch beim Menschen zeigen: Glaubt man den Versprechungen der Nahrungsmittelindustrie können sie bei ausreichender Versorgung Herz-, Kreislauf- und Gefäßproblemen, Immunschwäche, Gelenkschmerzen und sogar Krebs vorbeugen. Weil einige Substanzen, beziehungsweise deren Stoffwechselprodukte überdies die Blut-Hirn-Schranke überwinden, sind sie auch als natürliche Waffe zur Verzögerung des Auftretens von Krankheiten wie Parkinson und Alzheimer in die Diskussion geraten.

Ob Lebensmittel, die reich an Anthocyan und Procyanidin sind, tatsächlich das Nervensystem schützen und gegen Entzündungen helfen können, das untersucht Prof. Peter Schreier vom Lehrstuhl für Lebensmittelchemie der Universität Würzburg. In den kommenden drei Jahren koordiniert er ein Projekt mit Lebensmittelchemikern der Uni Münster, mit Medizinern der Uni Regensburg und mit Vertretern der Industrie. „Die Interaktion von Lebensmittelchemikern, -technologen und Medizinern ermöglicht zahlreiche Synergie-Effekte“, sagt Schreier. Durch die Zusammenarbeit unterschiedlicher Spezialisten werde es möglich, die propagierten Gesundheitseffekte verschiedener Stoffe genauer ins Visier zu nehmen und auf verschiedenen Ebenen, von der Zellkultur über Tierstudien bis zur Anwendung am Menschen, zu prüfen. „Dies sind ideale Voraussetzungen, um auf molekularer Ebene durch unterschiedliche Versuchsansätze gesicherte Erkenntnisse zu erarbeiten, für die dann auch zielgerichtete Umsetzungsmöglichkeiten in die Praxis gegeben sind“, so Schreier weiter.

Das Projekt ist Teil der in den nächsten drei Jahren vom Bundesministerium für Bildung und Forschung (BMBF) unterstützten Fördermaßnahme „Funktionelle Ernährungsforschung“, bei der bundesweit 14 Forschungsvorhaben mit insgesamt 13 Millionen Euro unterstützt werden. Die Initiative ist Teil der Hightech-Strategie des BMBF, die eine engere Kooperation von Wissenschaft und Wirtschaft bei gleichzeitig schnellerer Umsetzung von Forschungsergebnissen in Produkte fördert.

Media Contact

Gunnar Bartsch idw

Weitere Informationen:

http://www.uni-wuerzburg.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer