Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Schrittmacher für das Gedächtnis

08.02.2002


Göttinger Max-Planck-Forscher finden Proteine, die die Übertragungsleistung von Nervenzellen vielfältig steuern


Synapsen sind wichtige Schaltelemente der Informationsverarbeitung im Gehirn. Doch bisher war nicht bekannt, wie ihre Übertragungsleistung reguliert wird. Zwei Forscherteams um Christian Rosenmund, Max-Planck-Institut für biophysikalische Chemie, und Nils Brose, Max-Planck-Institut für experimentelle Medizin, haben jetzt bei neuartigen Experimenten mit genetisch veränderten Mäusen entdeckt, dass für diese Steuerung die Mitglieder einer speziellen Proteinfamilie, die so genannten Munc13-Proteine, verantwortlich sind (Cell, Vol. 108, 11. Januar 2002). Zudem fanden sie heraus, dass die Synapsen einer Nervenzelle von Munc13-Varianten so gesteuert werden, dass sie Informationen sowohl nieder- als auch hochfrequent - gewissermaßen über zwei Kanäle - synchron an andere Nervenzellen übertragen können (Neuron, Vol. 33, 31. Januar 2002). Diese Erkenntnisse sind von grundlegender Bedeutung für das Verständnis von Entwicklungs-, Lern- und Krankheitsvorgängen im Gehirn: Wechselt der Übertragungskanal in einer Nervenzelle, verändert sich die Qualität der Information - Signale werden verstärkt oder abgeschwächt, Informationen gelernt oder vergessen. Wird diese Protein-gesteuerte "Zweikanal-Technik" gestört, können Krankheitserscheinungen von Gedächtnisproblemen bis zu Schizophrenie auftreten.

Die geordnete Datenverarbeitung im menschlichen Gehirn wird durch ein Netzwerk von etwa 100 Milliarden Nervenzellen garantiert. Spezialisierte Kontaktstellen zwischen Nervenzellen sind dabei für die Informationsübertragung verantwortlich. An diesen so genannten Synapsen führen elektrische Impulse in einer sendenden Nervenzelle zur Freisetzung von Botenstoffen, den Neurotransmittern, die zuvor in kleinen membranumhüllten Bläschen (Vesikeln) gespeichert und bei elektrischer Aktivierung ausgeschüttet werden. Nachgeschaltete Nervenzellen empfangen diese Neurotransmitter und erzeugen daraufhin wieder elektrische Signale. Die Effektivität dieses Übertragungsprozesses kann von den beteiligten Nervenzellen genau reguliert werden. Heute geht man in der modernen Hirnforschung davon aus, dass Lern- und Gedächtnisprozesse durch eine Verstärkung oder Abschwächung der synaptischen Übertragung herbeigeführt werden.


Die so genannten Munc13-Moleküle hatten bereits in der Vergangenheit für Aufsehen in der neurobiologischen Forschung gesorgt (vgl. PRI B8/99 (38) "Nervenzellen mit Ladehemmung"), weil sie für die Signalübertragung an Synapsen absolut unentbehrlich sind. Ohne diese Proteine wird zwar eine ausreichend große Menge an Vesikeln, also Transportern für die Botenstoffübertragung an der Synapse, erzeugt, aber keiner dieser Transporter ist zur Freisetzung der Botenstoffe fähig. Ist die Funktion von Munc13-Proteinen gestört, bleibt die synaptische Signalübertragung zwischen Nervenzellen ‚stumm’ und große Teile des Gehirns werden ‚abgeschaltet’. Der Grund für diesen katastrophalen Effekt ist, dass Munc13-Proteine für das ‚Scharfmachen’ der mit Neurotransmittern gefüllten Vesikel verantwortlich sind.




Abb.: Lokalisation von Munc13-1 in Synapsen: Die Bilder zeigen eine Nervenzelle, in der die Verteilung von Munc13-1 (rot) mit der Verteilung von Synapsen (grün) verglichen wird. Dazu wurden im rechten Bild die beiden linken Bilder übereinander gelegt. Alle gelb erscheinenden Bildbereiche zeigen die Verteilung von Munc13 in Synapsen.

Foto: Max-Planck-Institut für experimentelle Medizin/Varoqueaux


"Angesichts der fundamentalen Wichtigkeit von Munc13-Proteinen für die Übertragungseigenschaften von Synapsen lag die Vermutung nahe, dass diese Proteine auch an der Regulation der synaptischen Übertragungsstärke beteiligt sind und so Gedächtnisprozesse steuern", sagt Dr. Nils Brose, Direktor am Max-Planck-Institut für experimentelle Medizin. In der Tat wird diese Annahme in den beiden jetzt veröffentlichten Studien zumindest teilweise bestätigt. Zunächst wiesen die Göttinger Forscher nach, dass Munc13-Proteine durch einen Regulationsmechanismus beeinflusst werden, den man schon seit langem mit Lern- und Gedächtnisprozessen in Verbindung gebracht hat: Durch geringfügige genetische Veränderungen können die Wissenschaftler Nervenzellen dazu bringen, Munc13-Proteine herzustellen, die den zellulären Signalstoff DAG nicht mehr binden. Die Nervenzellen sind dann besonders bei hohem Informationsfluss nicht mehr in der Lage, eine zuverlässige Transmitterfreisetzung und damit die fehlerfreie Signalübertragung an den Synapsen zu gewährleisten.

Im Zuge dieser Untersuchungen räumten die Göttinger Wissenschaftler auch mit der vorherrschenden Lehrmeinung auf, dass die sehr viel ‚prominentere’ Proteingruppe der C-Proteinkinasen für die Wirkung des Signalstoffs DAG auf die Freisetzung von Neurotransmittern verantwortlich sei. "Das war ein interessanter Nebenbefund, aber im Vordergrund unserer Entdeckung steht, dass Munc13-Proteine tatsächlich von zentraler Bedeutung für die Eigenschaften von Nervenzellen sind, die bei Lern- und Gedächtnismechanismen eine Rolle spielen", betont Dr. Christian Rosenmund, Forschungsgruppenleiter am Max-Planck-Institut für biophysikalische Chemie.

Diese Hypothese wurde durch eine zweite Studie der beiden Forschergruppen noch übertroffen. Bei Untersuchungen am Hippocampus, einer für Lernvorgänge besonders wichtigen Region des Gehirns, fiel den Wissenschaftlern auf, dass Nervenzellen in dieser Hirnregion zwei Munc13-Proteinvarianten enthalten - Munc13-1 und Munc13-2. Es stellte sich heraus, dass die einzelnen Nervenzellen ihre jeweils bis zu 1000 Synapsen in unterschiedlicher Weise mit diesen Proteinen ausstatten. Einige Synapsen enthalten Munc13-1, während andere durch Munc13-2 reguliert werden.

Die Forscher stellten fest, dass diese unterschiedliche Ausrüstung mit Munc13-Varianten dramatische Konsequenzen für die Eigenschaften der betroffenen Synapsen hat: Enthalten sie Munc13-1, so führt eine dauerhafte Reizung zu einer schnellen und ausgeprägten Ermüdung. Sind sie hingegen mit Munc13-2 ausgestattet, funktionieren sie selbst bei sehr hohen Aktivitätsraten und entsprechend hoher Belastung äußerst zuverlässig. Synapsen mit Munc13-1 eignen sich deshalb für die Übertragung dynamischer Informationen, also plötzlicher Veränderungen. Hingegen dienen Synapsen mit Munc13-2 der Übertragung statischer Informationen, wie z.B. der Körpertemperatur oder des Blutdrucks. Beide Synapsentypen sind an einem Axon einer Nervenzelle zu finden. Von daher ist die gleiche Nervenzelle des Hippocampus in der Lage, gleichzeitig unterschiedliche Informationen - gewissermaßen in zwei verschiedenen Dialekten - an andere Nervenzellen zu übertragen.

Doch nicht nur das: "Die für Lern- und Gedächtnisprozesse notwendige Veränderung der synaptischen Übertragungseigenschaften könnte durch einfache Umverteilung der Munc13-Varianten herbeigeführt werden", meinen Rosenmund und Brose. "Munc13-Proteine wären dann die Schrittmacher unseres Gedächtnisses". Wird an einer Synapse die eine durch die andere Proteinvariante ersetzt, kann die Signalübertragung verstärkt oder abgeschwächt werden. Treten hierbei Störungen ein, wären pathophysiologische Prozesse, wie Gedächtnisschwund oder Schizophrenie, die Folge.

Weitere Informationen erhalten Sie von:

Dr. Christian Rosenmund
Max Planck-Institut für biophysikalische Chemie, Göttingen
Abt. Membranbiophysik
Tel.: 05 51 / 20 1 - 16 72
Fax: 05 51 / 20 1 - 16 88
E-Mail: crosenm@gwdg.de

Dr. Nils Brose
Max-Planck-Institut für experimentelle Medizin, Göttingen
Abteilung molekulare Neurobiologie
Tel.: 05 51 / 38 99 - 7 25
Fax: 05 51 / 38 99 - 7 53
E-Mail: brose@em.mpg.de


| Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/pri02/pri0210.htm

Weitere Berichte zu: Munc13-1 Munc13-2 Munc13-Proteine Nervenzelle Protein Signalübertragung Synapse

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Entstanden Nervenzellen, um mit Mikroben zu sprechen?
10.07.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Forscher der Universität Bayreuth entdecken außergewöhnliche Regeneration von Nervenzellen
09.07.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektrische Spannung aus Elektronenspin – Batterie der Zukunft?

Forschern der Technischen Universität Ilmenau ist es gelungen, sich den Eigendrehimpuls von Elektronen – den sogenannten Elektronenspin, kurz: Spin – zunutze zu machen, um elektrische Spannung zu erzeugen. Noch sind die gemessenen Spannungen winzig klein, doch hoffen die Wissenschaftler, auf der Basis ihrer Arbeiten hochleistungsfähige Batterien der Zukunft möglich zu machen. Die Forschungsarbeiten des Teams um Prof. Christian Cierpka und Prof. Jörg Schumacher vom Institut für Thermo- und Fluiddynamik wurden soeben im renommierten Journal Physical Review Applied veröffentlicht.

Laptop- und Handyspeicher der neuesten Generation nutzen Erkenntnisse eines der jüngsten Forschungsgebiete der Nanoelektronik: der Spintronik. Die heutige...

Im Focus: Neue Erkenntnisse über Flüssigkeiten, die ohne Widerstand fließen

Verlustfreie Stromleitung bei Raumtemperatur? Ein Material, das diese Eigenschaft aufweist, also bei Raumtemperatur supraleitend ist, könnte die Energieversorgung revolutionieren. Wissenschaftlern vom Exzellenzcluster „CUI: Advanced Imaging of Matter“ an der Universität Hamburg ist es nun erstmals gelungen, starke Hinweise auf Suprafluidität in einer zweidimensionalen Gaswolke zu beobachten. Sie berichten im renommierten Magazin „Science“ über ihre Experimente, in denen zentrale Aspekte der Supraleitung in einem Modellsystem untersucht werden können.

Es gibt Dinge, die eigentlich nicht passieren sollten. So kann z. B. Wasser nicht durch die Glaswand von einem Glas in ein anderes fließen. Erstaunlicherweise...

Im Focus: The spin state story: Observation of the quantum spin liquid state in novel material

New insight into the spin behavior in an exotic state of matter puts us closer to next-generation spintronic devices

Aside from the deep understanding of the natural world that quantum physics theory offers, scientists worldwide are working tirelessly to bring forth a...

Im Focus: Im Takt der Atome: Göttinger Physiker nutzen Schwingungen von Atomen zur Kontrolle eines Phasenübergangs

Chemische Reaktionen mit kurzen Lichtblitzen filmen und steuern – dieses Ziel liegt dem Forschungsfeld der „Femtochemie“ zugrunde. Mit Hilfe mehrerer aufeinanderfolgender Laserpulse sollen dabei atomare Bindungen punktgenau angeregt und nach Wunsch aufgespalten werden. Bisher konnte dies für ausgewählte Moleküle realisiert werden. Forschern der Universität Göttingen und des Max-Planck-Instituts für biophysikalische Chemie in Göttingen ist es nun gelungen, dieses Prinzip auf einen Festkörper zu übertragen und dessen Kristallstruktur an der Oberfläche zu kontrollieren. Die Ergebnisse sind in der Fachzeitschrift Nature erschienen.

Das Team um Jan Gerrit Horstmann und Prof. Dr. Claus Ropers bedampfte hierfür einen Silizium-Kristall mit einer hauchdünnen Lage Indium und kühlte den Kristall...

Im Focus: Neue Methode führt zehnmal schneller zum Corona-Testergebnis

Forschende der Universität Bielefeld stellen beschleunigtes Verfahren vor

Einen Test auf SARS-CoV-2 durchzuführen und auszuwerten dauert aktuell mehr als zwei Stunden – und so kann ein Labor pro Tag nur eine sehr begrenzte Zahl von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Intensiv- und Notfallmedizin: „Virtueller DIVI-Kongress ist ein Novum für 6.000 Teilnehmer“

08.07.2020 | Veranstaltungen

Größte nationale Tagung für Nuklearmedizin

07.07.2020 | Veranstaltungen

Corona-Apps gegen COVID-19: Nationalakademie Leopoldina veranstaltet internationales virtuelles Podiumsgespräch

07.07.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Satellitendaten zeigen Ausmaß der Dürresommer 2018 und 2019

10.07.2020 | Geowissenschaften

Grundlagen der Funktionen von Glutaredoxin-Proteinen im Eisenstoffwechsel und der Signalübertragung aufgeklärt

10.07.2020 | Medizin Gesundheit

Künstliche Intelligenz für die Notfallmedizin

10.07.2020 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics