Forschung "in silico": Ein Zwischenbericht aus der Zukunft

Vieles, was wir heutzutage selbstverständlich nutzen, wäre ohne Computermodelle und Simulationen nicht denkbar: Moderne Autos und Flugzeuge, Navigationssysteme und der allabendliche „Strömungsfilm“ bei der Wettervorhersage. In den Biowissenschaften hingegen stehen Modellierung und Simulation noch am Anfang. Um diese Lücke zu schließen, entstand Anfang 2004 das erste deutsche Zentrum für Modellierung und Simulation in den Biowissenschaften (BIOMS) in Heidelberg.

Mit je 2,5 Millionen Euro finanzieren die Klaus Tschira Stiftung und das Land Baden-Württemberg jeweils ein Drittel des Zentrums. Die restlichen Mittel erbringen die Universität Heidelberg und die Forschungsinstitute Deutsches Krebsforschungszentrum (DKFZ), EML Research, Europäisches Molekularbiologisches Laboratorium (EMBL) und Max-Planck-Institut für medizinische Forschung. Der Förderungszeitraum erstreckt sich auf fünf Jahre. Mit den Mitteln wird ausschließlich die Arbeit von Nachwuchswissenschaftlern gefördert. BIOMS ist somit in seiner Zielsetzung und Art der Nachwuchsförderung ein international einzigartiges Projekt.

Mit den BIOMS-Mitteln wurden drei neue Forschungsgruppen an den Standorten EMBL, DKFZ und Interdisziplinäres Institut für Wissenschaftliches Rechnen (IWR) der Universität Heidelberg eingerichtet. Hier werden Modellierung und Computersimulationen zur Erforschung biologischer Systeme eingesetzt. Dank dieser Methoden können komplexe biologische Prozesse nicht mehr nur „in vivo“ (am lebenden Organismus) oder „in vitro“ (im Reagenzglas), sondern auch verstärkt „in silico“ (mit Hilfe von Computerprogrammen) erforscht werden. Auf Grund von Laborexperimenten erstellen die Wissenschaftler zunächst Modelle. Deren Stimmigkeit prüfen sie mit Computersimulationen und entwickeln aus den Ergebnissen neue Experimente und Erklärungsmuster.

Unter der Leitung von Dr. Francois Nédélec am EMBL, Dr. Ulrich Schwarz am IWR und Dr. Matthias Weiss am DKFZ forschen derzeit mehr als ein Dutzend junge Wissenschaftler. Zusätzlich arbeiten sieben BIOMS-Nachwuchsforscher an den obigen sowie den weiteren beteiligten Institutionen – der EML Research und dem Max-Planck-Institut für medizinische Forschung. Die drei Gruppenleiter sind etwa zwei Jahre nach Beginn ihrer Tätigkeit schon ein wichtiger Bestandteil der Heidelberger Aktivitäten im Bereich der quantitativen Biologie geworden. Zum Beispiel organisieren sie gemeinsam das BIOQUANT-BIOMS-Seminar, das regelmäßig eine große Zuhörerschaft zu Vorträgen versammelt. Sie waren federführend an der erfolgreichen Beantragung des Exzellenzclusters „Zelluläre Netzwerke“ und der BMBF-Forschungseinheit „Systembiologie der Virus-Zell-Wechselwirkung (VIROQUANT) beteiligt.

Stabile Instabilität

Wie entstehen aus sich unkoordiniert bewegenden Proteinen präzise arbeitende zelluläre Strukturen?

Zelluläre Eiweißstrukturen schaffen es mit erstaunlicher Präzision, biologische Aufgaben zu erledigen. Dabei entstehen diese Strukturen letztlich aus einzelnen, sich anscheinend unkoordiniert bewegenden Proteinen. Diesem Phänomen ist der Wissenschaftler Dr. Francois Nédélec vom Europäischen Molekularbiologischen Laboratorium mit seiner BIOMS-Arbeitsgruppe auf der Spur. Am Beispiel der mitotischen Spindel, einer zellulären Struktur, die während der Zellteilung entsteht und dafür sorgt, dass die Chromosomen sich trennen, erforscht er diese Leistung der spontanen Selbstorganisation von Proteinen. Seine jüngsten Untersuchungen haben gezeigt, dass die Struktur nicht statisch, sondern hochdynamisch ist: Innerhalb der Spindel schrumpfen oder verschwinden Proteinfasern – wenn es sein muss – innerhalb weniger Minuten. Ebenso flexibel entstehen neue Proteinfasern. Von außen betrachtet ist davon kaum etwas zu bemerken: Der Spindelapparat kann äußerlich scheinbar unverändert über Stunden bestehen bleiben.

Tatsächlich ist es aber so, dass kein einziges der Proteine, die die Spindel bilden, lange in ihr verbleibt. Es ist vielmehr ihre permanente Interaktion, die die äußerlich stationär erscheinende Gesamtstruktur bewirkt. „Die Spindel behält ihre äußere Form und Größe und entwickelt gleichzeitig die ausgleichenden Kräfte, die notwendig sind, damit Chromosomen in der Zelle präzise positioniert und voneinander getrennt werden können“, resümiert Francois Nédélec.

Mit ihren Untersuchungen wollen die Wissenschaftler dazu beitragen, schwere Krankheiten besser verstehen und heilen zu können, beispielsweise Krebs, der entsteht, wenn sich Zellen unkontrolliert und übermäßig teilen. Die Komplexität, der sich die Wissenschaftler gegenüber sehen, ist überwältigend. Hier ist der Einsatz von Simulationen, mit deren Hilfe Francois Nédélec eigene „in vitro“-Experimente und daraus entwickelte Modelle überprüft, daher besonders hilfreich.

Weitere Informationen:
http://www.cytosim.org/
Die Klebekraft der Zellen
Was hält Gewebe zusammen und wie heften sich Zellen an Oberflächen fest?
Sich an ihre Umgebung anzuheften gehört zu den wichtigsten Aufgaben von Zellen. Im Körper haften Zellen an weichen Oberflächen: Weiße Blutkörperchen heften sich an Gefäßwände, bevor sie im angrenzenden Gewebe Fremdkörper aufspüren. Gewebezellen sind in ständigem Kontakt mit anderen Zellen oder dem Füllmaterial zwischen den Zellen. Krebszellen verlassen zur Metastasierung den Gewebeverbund, in Wunden kleben Zellen zur Heilung aneinander. Experimentelle Studien der letzten Jahre haben gezeigt, dass sie in Laborexperimenten auf harten Oberflächen wie Glas oder Plastik schneller wachsen und sogar eine andere Form annehmen als auf weichen Unterlagen, die der Situation im Körper besser entsprechen. Diese Erkenntnisse könnten eine große Rolle bei biomedizinischen Anwendungen spielen, wie zum Beispiel dem Einsetzen von Implantaten.
Wie es Zellen gelingt, an Oberflächen festzuhaften und wie sie auf einwirkende Kräfte wie Zug oder Druck reagieren, fasziniert Dr. Ulrich Schwarz seit einigen Jahren. Der theoretische Physiker lotet mit seiner BIOMS-Arbeitsgruppe im Interdisziplinären Institut für Wissenschaftliches Rechnen an der Universität Heidelberg die Grenzen zwischen Physik und Biologie aus. Die Wissenschaftler arbeiten an einem theoretischen Modell, das die Rolle von mechanischen Kräften bei der Zellanhaftung (Adhäsion) erklären hilft. Sie wollen herausfinden, wie einzelne Proteine verbunden sind und wie Kräfte das Übertragen von Signalen in der Zelle beeinflussen. Inzwischen wurden bereits Zwischenergebnisse erzielt: Die Arbeitsgruppe fand in Zusammenarbeit mit experimentell arbeitenden Wissenschaftlern des Weizmann-Instituts in Rehovot (Israel) heraus, dass Kräfte, die von außen einwirken, Kontakte wachsen lassen.

„Wir arbeiten zudem daran, das Phänomen der „rollenden Adhäsion“ zu simulieren, “ so Schwarz. Dabei handelt es sich um eine zelluläre Bewegungsform, die beispielsweise auftritt, bevor weiße Blutkörperchen aus den Blutgefäßen in das umliegende Gewebe übergehen. Die Forscher konnten erklären, warum die „rollende Adhäsion“ nur ab einer bestimmten Fließgeschwindigkeit auftritt. Im Körper soll dies wahrscheinlich verhindern, dass die weißen Blutkörperchen an den falschen Stellen anhaften.

Weitere Informationen:
http://www.iwr.uni-heidelberg.de/organization/bioms/schwarz/
Im Container zum Bestimmungsort
Wie transportieren Zellen wertvolle Fracht?
Jede tierische Zelle ist von einer Membran umgeben. Auch im Innern der Zelle schaffen Membranen voneinander abgetrennte Bereiche mit unterschiedlichen Aufgaben: Die Membran des Zellkerns umschließt die Erbsubstanz, die die Informationen für den Bau der Proteine enthält. An anderen Membranen ereignen sich Synthese, Qualitätskontrolle und Modifikationen von Proteinen. Zwischen diesen Reaktionsräumen findet ein reger Austausch von Molekülen statt. Hierzu benutzt die Zelle kleine Container, so genannte Vesikel, die sich aus den Membranen bilden. Bei Bedarf schnüren sich von den Membranen Transportvesikel ab und bringen in ihrem Innern Proteine zu einem anderen Ort. Noch ist wenig über diese zellulären Transportwege bekannt. Dr. Matthias Weiss vom Deutschen Krebsforschungszentrum in Heidelberg, Leiter der BIOMS-Arbeitsgruppe für Zelluläre Biophysik, untersucht mit seiner Arbeitsgruppe „Biologische Membranen“ das Containersystem der Zellen.

Schwere Krankheiten wie Diabetes, Mukoviszidose und Krebs können das Containersystem stören. Der Vesikeltransport selbst kann ebenfalls Krankheiten verursachen – wenn etwa der Transport bestimmter Proteine zur äußeren Zellmembran gestört ist oder von außen kommende Signale von der Zelle falsch verarbeitet werden. Mit Simulationen wollen die Wissenschaftler mehr über die Transportwege der Vesikel in den Zellen herausfinden. Insbesondere interessieren sie sich für sogenannte „exit sites“, Stellen des inneren Membransystems der Zelle, an denen sich Vesikel neu bilden. „Mehr über die Transportvorgänge im Inneren der Zelle zu erfahren, ist von weitreichender Bedeutung: Mit unserer Arbeit wollen wir dazu beitragen, neue Therapieansätze für diese Erkrankungen zu finden“, so Dr. Weiss.

Hintergrundinformationen: http://www.dkfz.de/en/cellular_biophysics/index.html

BIOMS

Das erste deutsche Zentrum für Modellierung und Simulation in den Biowissenschaften (BIOMS) wurde Anfang 2004 in Heidelberg eröffnet. In dem neuen Zentrum werden Modellierung und Computersimulationen zur Erforschung biologischer Systeme eingesetzt. Die Mittel des neuen Zentrums fließen ausschließlich in die Förderung von Nachwuchswissenschaftlern. Beteiligte Institute sind das Deutsche Krebsforschungszentrum, die EML Research (das Forschungsinstitut der Klaus Tschira Stiftung), das European Molecular Biology Laboratory, das Max-Planck-Institut für medizinische Forschung und die Universität Heidelberg (mit dem Interdisziplinären Zentrum für Wissenschaftliches Rechnen und dem Zentrum für Molekulare Biologie). Koordinatoren sind Prof. Willi Jäger (Universität Heidelberg) und Dr. Ursula Kummer (EML Research). Mit je 2,5 Millionen Euro finanzieren die Klaus Tschira Stiftung und das Land Baden-Württemberg jeweils ein Drittel des Zentrums. Die restlichen Mittel erbringen die beteiligten Institute. Der Förderzeitraum erstreckt sich auf fünf Jahre. Weitere Informationen: www.bioms.de

Ab 2007 sollen die Nachwuchsgruppen in das neu errichtete Bioquant-Gebäude auf dem Gelände der Universität Heidelberg einziehen (http://www.bioquant.uni-heidelberg.de).

Kontakt:

Renate Ries
Klaus Tschira Stiftung gGmbH
Presse- und Öffentlichkeitsarbeit
Tel: 06221-533 214, Fax: 06221-533 198
Renate.ries@kts.villa-bosch.de

Media Contact

Renate Ries idw

Weitere Informationen:

http://www.bioms.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer