Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Gedächtnistraining für den Computer

01.09.2000


... mehr zu:
»Aktivierung »Kante »Nervenzelle »Neuron
TU Berlin, Wissenschaftsdienst "Forschung aktuell", Ausgabe September 2000 - Informationsverarbeitung

Mit künstlichen neuronalen Netzen wollen Forscher nachvollziehen, wie Informationen im Gehirn verarbeitet werden. Dazu müssen sie herausfinden, wie Neurone sich gegenseitig aktivieren und miteinander in Wechselwirkung stehen. Ein klassisches neuronales Netz entwickelte jetzt ein Wissenschaftler der TU Berlin weiter und gelangte somit zu einem besseren Verständnis von Lernmechanismen.

Denken und Lernen - das sind die Fähigkeiten, in denen der Mensch anderen Lebewesen überlegen ist. Doch wie er das tut, wie das Gehirn funktioniert, ist auch für ihn immer noch ein Geheimnis. Trotzdem gibt es Ansätze, mit denen die Fähigkeiten des menschlichen Gehirns auf den Computer übertragen werden sollen. Künstliche Intelligenz ist in diesem Zusammenhang ein Stichwort, die so genannte Boltzmann - Maschine ein weiteres.
Die Boltzmann - Maschine zählt zu den künstlichen neuronalen Netzen, jenen Rechnerarchitekturen, deren Struktur und Funktion sich an den Nervenzellen lebender Organismen orientieren. Konkret ist sie ein mathematisches Modell, mit dem per Computer simuliert wird, wie durch die Aktivität von Nervenzellen (Neuronen) eine komplexe Umwelt erfasst wird. Wenn beispielsweise die menschlichen Augen etwas sehen, dann geschieht das, indem Licht-Photonen bestimmte Nervenzellen aktivieren. Im Computermodell gibt der Wissenschaftler das durch Zahlen (1 für hell, 0 für dunkel, 0,5 für grau) ein und aktiviert somit die Eingabeneuronen.
Ähnlich dem biologischen Vorbild des Gehirns sind alle Neuronen durch synaptische Verbindungsstärken miteinander gekoppelt. Im mathematischen Modell wird das realisiert, indem Verbindungen zwischen den Neuronen unterschiedlich gewichtet werden. Dadurch können die Eingabeneuronen ihre Aktivierung an innere Neuronen weitergeben. Allerdings nur an die, zu denen eine starke Verbindung besteht. Neurone, die insgesamt viel Aktivierung erhalten, werden mit großer Wahrscheinlichkeit selbst aktiv. Auf diese Weise unterliegen die Aktivierungszustände einer Zufallsverteilung, der aus der Thermodynamik bekannten Boltzmann - Verteilung.
Cornelius Weber, Informatiker der Technischen Universität Berlin, hat jetzt in seiner Dissertation die Boltzmann - Maschine weiterentwickelt. In dem klassischen Modell gibt es nur die mathematischen Aktivierungszustände +1 und -1. Zu diesen hat Weber die Aktivierung Null eingeführt, das heißt, im Computer-Modell können innere Neurone jetzt auch inaktiv sein. Damit kann Cornelius Weber der Frage nachgehen, wie beispielsweise ein Bild wiedergegeben wird, wenn nur wenige innere Neurone aktiv sind. Weber vergleicht diese Aufgabenstellung mit der Frage: Warum werden Neurone im visuellen Areal der Großhirnrinde aktiv, wenn sie einen bestimmten Helligkeitskontrast, beispielsweise eine Kante, wahrnehmen? Kern der Untersuchungen ist das Verständnis, wie Neurone Information repräsentieren.
Eine besondere Rolle spielt dabei das Lernen der Verbindungsstärken. Solange die Daten anliegen, die Eingabeneurone also wie ein Auge das Bild sehen, befindet sich das neuronale Netz in der so genannten Wachphase. In dieser Phase verstärken die Neurone, die gerade aktiv sind, ihre Verbindungen. Häufig anliegende Aktivitätszustände werden dadurch stabilisiert. Die Fachleute sprechen dabei vom Hebbschen Lernen. Wenn keine Daten von außen eingegeben werden, in der so genannten Schlafphase, werden Neurone spontan aktiv. Es findet anti-Hebbsches Lernen statt.
In dem Modell von Cornelius Weber entstehen durch die Einführung der Aktivierung Null beim Lernen Neurone, die durch Kanten, also Helligkeitskontraste, aktiviert werden. Nur dadurch entstehen biologisch plausible Resultate, mit denen Lernmechanismen, die dem menschlichen Gehirn zugrunde liegen, verstanden werden können. Und das ist letztlich das Ziel von künstlichen neuronalen Netzen. inhe

Datenbank
Ansprechpartner: Dipl.-Phys. Cornelius Weber, Technische Universität Berlin, Institut für Kommunikations- und Softwaretechnik
Fachgebiet: Neuronale Informationsverarbeitung
Kontakt: Franklinstraße 28/29, 10623 Berlin, Tel.: 030/314-25542, E-Mail: cweber@cs.tu-berlin.de

Der Wissenschaftsdienst "Forschung aktuell" und der dazugehörige Expertendienst ist ein Service des Pressereferats der TU Berlin für Journalisten und andere Interessenten. Er entsteht in Zusammenarbeit mit den Wissenschaftlerinnen und Wissenschaftlern und soll einer breiteren Öffentlichkeit Einblicke in aktuelle Forschungsprojekte ermöglichen. Sie können den Dienst auch per E-Mail unter der Internetadresse http://www.tu-berlin.de/presse/wissenschaftsdienst/index.html
 abonnieren. Er erscheint zunächst viermal jährlich. Diese Texte stehen Ihnen zur Veröffentlichung frei. Der Abdruck ist honorarfrei, Belegexemplar erbeten.

Informationen erteilt Ihnen gern Stefanie Terp: Tel.: 030/314-23820, E-Mail: steffi.terp@tu-berlin.de.

Ramona Ehret |

Weitere Berichte zu: Aktivierung Kante Nervenzelle Neuron

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics