Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Natürliche Umgebung für künstliches Gewebe

03.11.2006
Jan Hansmann entwickelte in seiner Diplomarbeit am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB einen Bioreaktor, in dem In-vitro-Gewebe mit eigenem Blutgefäßsystem optimal kultiviert werden kann.

Das rechnergestützte Zellkulturgefäß simuliert die natürliche Umgebung des Körpers, vom arteriellen Druck bis zur Temperatur. Auf der Fraunhofer-Jahrestagung am 18. Oktober 2006 in Bremen wurde Hansmann hierfür mit dem 1. Hugo-Geiger-Preis für die Life Sciences ausgezeichnet.

Wenn Gewebe verletzt werden oder Organe erkranken, ist die Transplantation oft der einzige Weg zu einer Heilung. Doch werden weit mehr Spenderorgane benötigt als zur Verfügung stehen und Wartezeiten sind oftmals lang. Zudem akzeptiert der Körper fremdes Gewebe nicht so einfach. Der Empfänger muss lebenslang Medikamente nehmen um eine Abstoßung des transplantierten Gewebes zu verhindern.

Einen Ausweg versprechen autologe Transplantate, die aus den Zellen des Patienten selbst im Labor (in vitro) hergestellt werden. Mit Hilfe des Tissue Engineering wurden in der regenerativen Medizin in den letzten Jahren bereits große Erfolge erzielt. Autologe Haut- und Knorpeltransplantate sind auf dem Markt, Herzklappen werden klinisch erprobt. Am Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB in Stuttgart gelang dem Diplom-Ingenieur (Technische Kybernetik) Jan Hansmann aus der Arbeitsgruppe Zellsysteme nun mit seiner Diplomarbeit "Entwicklung eines Bioreaktors für den Einsatz im vaskularisierten Tissue Engineering" ein großer Schritt auf dem Weg zu komplexeren künstlichen Geweben. Dafür wurde er mit dem 1. Preis des von der bayerischen Staatsregierung für die Fraunhofer-Gesellschaft gestifteten Hugo-Geiger-Preises für die Life Sciences ausgezeichnet.

Der rechnergestützte Bioreaktor ist ein Kulturgefäß, das Hansmann speziell für eine am Fraunhofer IGB vorhandene vaskularisierte - von Blutgefäßen durchzogene - Biomatrix entwickelte. Für den Aufbau dreidimensionaler, organähnlicher Gewebe werden nicht nur lebens- und vermehrungsfähige Zellen benötigt, sondern auch eine Trägerstruktur (Matrix), auf der die Zellen wachsen und gewebetypische Merkmale ausbilden. "Die vaskularisierte Biomatrix ist ein Stück Schweinedünndarm, von dem alle tierischen Zellen entfernt wurden. Sie besitzt eine Arterie für die Zufuhr von Nährstoffen und eine Vene für die Ableitung von Stoffwechselprodukten", erklärt Professor Heike Mertsching, Abteilungsleiterin Zellsysteme am IGB. Wenn die verbleibenden Blutgefäße und Kapillaren - wie im Körper - mit patienteneigenen Endothelzellen ausgekleidet sind, können organspezifische Zellen auf der Trägerstruktur angesiedelt und zusammen mit den Endothelzellen - in Kokultur - wachsen und gewebespezifische Funktionen übernehmen.

Im Bioreaktor ist das Gewebestück analog zur natürlichen Situation an einen simulierten "Blutkreislauf" angeschlossen. Über separate Anschlüsse für die Arterie und die Vene der Matrix wird frische Nährlösung zu- und verbrauchte abgeführt. Ein angeschlossener Rechner regelt die arterielle Nährstoffzufuhr über Parameter wie arteriellen Druck, Temperatur und Strömungsgeschwindigkeit. "So werden physiologische Bedingungen geschaffen, wie sie in der natürlichen Umgebung des Gewebes im Körper herrschen", sagt Hansmann. Wie im Körper das Herz stoßweise Blut durch die Gefäße pumpt, so erzeugt im Bioreaktor eine Pumpe den Druck ebenso pulsatil. "Dies ist von großem Vorteil, da die Endothelzellen nur so vital bleiben und ihre typischen Eigenschaften nicht verlieren. Zudem kann untersucht werden, wie sich Pulsfrequenz, Blutdruckamplituden oder Blutdruckmittelwerte auf die Zellen eines Gewebes auswirken", hebt Hansmann hervor.

Mit dem Bioreaktor ist es den Wissenschaftlern der Arbeitsgruppe gelungen, aus Leberzellen und Endothelzellen ein künstliches Lebergewebe mit seiner gewebespezifischen Morphologie und Funktion zu erzeugen, mit dem beispielsweise Medikamente auf Toxizität und Nebenwirkungen der Abbauprodukte getestet werden können. Denn obwohl die Leber eines der regenerativsten Organe ist, war es bisher problematisch, die Vitalität und Funktionalität von Leberzellen unter Langzeitkulturbedingungen in vitro zu erhalten. Endothelzellen in der Leber spielen eine wichtige Rolle als Filtrationsbarriere und sind in die molekulare Steuerung wesentlicher Stoffwechselprozesse miteinbezogen. "Für den Aufbau eines künstlichen Lebergewebes ist daher die Kokultur mit Endothelzellen essenziell", erläutert Mertsching.

Dr. Claudia Vorbeck | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.igb.fraunhofer.de/
http://www.igb.fhg.de/WWW/Presse/Jahr/2006/dt/PI_HGP06_hansmann.html

Weitere Berichte zu: Arterie Bioreaktor Endothelzelle Gewebe Zellsysteme

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Ein neues Mittel gegen Zöliakie
24.09.2018 | Technische Universität Wien

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neue Therapien bei Gefäßerkrankungen

Auf der Jahrestagung der Deutschen Gesellschaft für Angiologie (DGA) vom 12. bis 15. September in Münster stellten Gefäßspezialisten aus ganz Deutschland die neuesten Therapien bei Gefäßerkrankungen vor. Vor allem in den Bereichen periphere arterielle Verschlusskrankheit (pAVK) und venöse Verschlusskrankheiten wie die Tiefe Venenthrombose (TVT) gibt gute Neuigkeiten für die Patienten. Viele der 720 Gefäßspezialisten, die an der Jahrestagung teilnahmen, stellten neueste Studienergebnisse vor.

Millionen Menschen leiden in Deutschland unter Gefäßerkrankungen, allein rund fünf Millionen unter der „Schaufensterkrankheit“, medizinisch periphere...

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mit traditionellen Methoden gegen extreme Trockenheit

24.09.2018 | Geowissenschaften

Europäische Spitzenforschung auf der EuMW

24.09.2018 | Messenachrichten

Neue Therapien bei Gefäßerkrankungen

24.09.2018 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics