Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Details zum molekularen Postversand in der Zelle

03.11.2006
Forschungsverbund unter Beteiligung des MPI für molekulare Genetik gelingt neuer Einblick in die Synthese- und Sortiermaschinerie für spezielle Proteine

Wissenschaftlern des Berliner Max-Planck-Instituts für molekulare Genetik, der LMU München und der Universität Heidelberg ist es gelungen, mit bislang unerreicht hoher Auflösung neue Details des komplexen biologischen Prozesses der Proteinsortierung in der Zelle darzustellen. Mit Hilfe von Kryo-Elektronenmikroskopie und Einzelpartikelanalyse konnten die Forscher erstmals im Detail sichtbar machen, wie Proteinketten beim Verlassen des Ribosoms von einem Signalerkennungsprotein erkannt werden. Dieser Vorgang läuft nach den Erkenntnissen der Wissenschaftler bei Bakterien und höheren Organismen nach dem gleichen Mechanismus ab [Nature, 29. Oktober 2006, Advance Online Publication].


Die Geburt eines neuen Proteins beobachtet mit Hilfe der Kryo-Elektronenmikroskopie: Ein neues Protein schaut zunächst mit seiner Signalsequenz (grün) aus dem Austrittstunnel am Ribosom (blau) heraus. Sie wird vom Signalerkennungsprotein (SRP, rot) erkannt und gebunden. Die Bindung von SRP ist entscheidend für den weiteren Versand des neuen Proteins in der Zelle. Bild: Max-Planck-Institut für Molekulare Genetik

Die Sortierung bestimmter Proteine in der Zelle und der Transport zu ihrem jeweiligen Bestimmungsort sind ein zentraler Schritt für die Funktion aller Organismen. Die Mehrzahl der Proteine wird bereits während ihrer Biosynthese ihrem späteren Einsatzort zugeordnet (kotranslationale Translokation). Dies geschieht mit Hilfe eines molekularen Komplexes, der aus einem Ribosom, also der Protein-Synthese-Maschine der Zelle, und einem Signalerkennungsprotein (engl. signal recognition particle, SRP) besteht.

Das Schlüsselelement für die Proteinsortierung ist jedoch eine Signalsequenz, welche sich am Anfang - Wissenschaftler sprechen vom N-terminalen Ende - des vom Ribosom gebildeten Proteins befindet und quasi als "Postleitzahl" in der Zelle fungiert. Das Signalerkennungsprotein (SRP) liest diese Sequenz, sobald sie am Anfang einer gerade neu gebildeten Proteinkette das Ribosom verlässt. Im nächsten Schritt bindet SRP an das Ribosom und leitet es unter Beteiligung weiterer Komponenten an das endoplasmatischen Reticulums (ER) weiter, wo die nächsten Schritte der Sortierung erfolgen.

Das Wissenschaftlerteam der LMU München, der Universität Heidelberg und des Berliner Max-Planck-Instituts für molekulare Genetik, denen im Rahmen des Berliner UltraStrukturNetzwerk (USN) ein modernes Kryo-Elektronenmikroskop zur Verfügung steht, konnten nun in bislang unerreichter Qualität auf molekularer Ebene darstellen, wie die Signalsequenz durch SRP erkannt wird. Die Signalsequenz, die "Adresse" des Proteins, bindet an eine spezielle Bindungstasche des SRP, die sogenannte M-Domäne. Diese Bindung führt zu Umlagerungen / Strukturveränderungen im SRP selber, woduch die Überführung der Signalsequenz an den Translokon-Komplex eingeleitet werden (siehe auch MPG-Presseinformation.

Immerhin etwa 30% aller Proteine der höher entwickelten Lebewesen wie z.B. des Menschen werden mit diesem Mechanismus sortiert - vor allem sekretorische Proteine, beispielsweise Antikörper, und Membranproteine, die unter anderem als Empfängermoleküle für neuronale Botenstoffe oder andere Signalmoleküle dienen. Dieser Vorgang findet bei Bakterien und Säugetierzellen in vergleichbarer Weise statt. Seine Aufklärung ist ein wichtiger Baustein zum Verständnis, auf welche Weise sekretorische Proteine bzw. Membranproteinen nach ihrer Bildung in der Zelle weitergeleitet werden.

Hintergrundinformation:

Das Berliner UltraStrukturNetzwerk (USN)
Das UltraStrukturNetzwerk ist ein Projektverbund, der sich zum Ziel gesetzt hat, komplizierte "molekulare Maschinen" mit modernsten Methoden wie der Massenspektrometrie (MS) und der Kryo-Elektronenmikroskopie (Kryo-EM) zu untersuchen. Der Verbund wurde vom Max-Planck-Institut für molekulare Genetik in Kooperation mit der Charité initiiert und vernetzt inzwischen mehr als 15 Arbeitsgruppen in der Region Berlin-Brandenburg. Neben den drei Berliner Universitäten, also der Freien Unversität, der technischen Universität und der Humboldt-Universität, gehören dazu auch das Max-Delbrück-Centrum für Molekulare Medizin, Leibniz-Institut für Molekulare Pharmakologie (FMP), die Universität Potsdam sowie das Max-Planck-Institut für molekulare Pflanzenphysiologie in Potsdam.

Mit Unterstützung durch Europäische Fördermittel und der Berliner Senatsverwaltung für Wissenschaft, Forschung und Kultur (Gesamtvolumen: 8 Mio. Euro) wurde im UltraStrukturNetzwerk die technologische Infrastruktur für die Analyse von "molekularen Maschinen" geschaffen. Die Core-Facilities, darunter ein 300 kV Tecnai G2 Polara Kryo-Elektronenmikroskop, sind am Max-Planck-Institut für molekulare Genetik lokalisiert. Die Lokalisierung der Signalsequenz im aktiven Ribosom bzw. den verschiedenen Ribosom-SRP-Komplexen gehört zu den ersten Forschungsergebnissen, die bereits in der Aufbauphase des USN erzielt werden konnten.

Originalveröffentlichung:

MarioHalic, Michael Blau, Thomas Becker, Thorsten Mielke, Martin R. Pool, Klemens Wild, Irmgard Sinning & Roland Beckmann

Following the signal sequence from ribosomal tunnel exit to signal recognition particle, Nature, 29. Oktober 2006, advanced online publication

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Max-Planck-Institut Protein Ribosom SRP Signalsequenz UltraStrukturNetzwerk Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Antibiotika aus dem Meer
18.11.2019 | Friedrich-Schiller-Universität Jena

nachricht Auch parasitische Wespen machen Fettsäuren selbst
18.11.2019 | Universität Regensburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neu entwickeltes Glas ist biegsam

Eine internationale Forschungsgruppe mit Beteiligung der Österreichischen Akademie der Wissenschaften hat ein Glasmaterial entwickelt, das sich bei Raumtemperatur bruchfrei verformen lässt. Das berichtet das Team aktuell in "Science". Das extrem harte und zugleich leichte Material verspricht ein großes Anwendungspotential – von Smartphone-Displays bis hin zum Maschinenbau.

Gläser sind ein wesentlicher Bestandteil der modernen Welt. Dabei handelt es sich im Alltag meist um sauerstoffhaltige Gläser, wie sie etwa für Fenster und...

Im Focus: Images from NJIT's big bear solar observatory peel away layers of a stellar mystery

An international team of scientists, including three researchers from New Jersey Institute of Technology (NJIT), has shed new light on one of the central mysteries of solar physics: how energy from the Sun is transferred to the star's upper atmosphere, heating it to 1 million degrees Fahrenheit and higher in some regions, temperatures that are vastly hotter than the Sun's surface.

With new images from NJIT's Big Bear Solar Observatory (BBSO), the researchers have revealed in groundbreaking, granular detail what appears to be a likely...

Im Focus: Veränderungen der Chiralität von Molekülen in Echtzeit beobachten

Chirale Moleküle – Verbindungen, die als Bild und Spiegelbild vorkommen – spielen eine wichtige Rolle in biologischen Prozessen und in der chemischen Synthese. Chemikern der ETH Zürich ist es nun erstmals gelungen, mit Hilfe von Ultrakurzzeit-Laserpulsen Änderungen der Chiralität während einer chemischen Reaktion in Echtzeit zu beobachten.

Manche Moleküle können in zwei spiegelbildlichen Formen existieren, ähnlich wie unsere Hände. Obwohl solche sogenannten Enantiomere fast identische...

Im Focus: Durchbruch in der Malariaforschung

Eine internationale Forschungsgruppe um den Zellbiologen Volker Heussler von der Universität Bern hat hunderte genetische Schwachstellen des Malaria-Parasiten Plasmodium identifiziert. Diese sind in der Medikamenten- und Impfstoffentwicklung dringend erforderlich, um die Krankheit dereinst ausrotten zu können.

Trotz grosser Anstrengungen in Medizin und Wissenschaft, sterben weltweit immer noch mehr als 400'000 Menschen an Malaria. Die Infektionskrankheit wird durch...

Im Focus: Bauplan eines bakteriellen Kraftwerks entschlüsselt

Wissenschaftler der Universität Würzburg und der Universität Freiburg gelang es die komplexe molekulare Struktur des bakteriellen Enzyms Cytochrom-bd-Oxidase zu entschlüsseln. Da Menschen diesen Typ der Oxidase nicht besitzen, könnte dieses Enzym ein interessantes Ziel für neuartige Antibiotika sein.

Sowohl Menschen als auch viele andere Lebewesen brauchen Sauerstoff zum Überleben. Bei der Umsetzung von Nährstoffen in Energie wird der Sauerstoff zu Wasser...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Antibiotika aus dem Meer

18.11.2019 | Biowissenschaften Chemie

Lebende Brücken: Mit alten indischen Bautechniken moderne Städte klimafreundlich gestalten

18.11.2019 | Architektur Bauwesen

„Moonwalk“ für die Wissenschaft zeigt Verzerrungen im räumlichen Gedächtnis

18.11.2019 | Studien Analysen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics