Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie körpereigene Cannabinoide epileptische Krämpfe lindern können: Neue Erkenntnisse aus Tiermodellen

20.09.2006
Wissenschaftler der Universität Mainz beschreiben bisher unvermutete Wirkungsweisen neuroprotektiver Endocannabinoide im Hippocampus

Wissenschaftler der Johannes Gutenberg-Universität Mainz haben herausgefunden, wie übermäßige neuronale Gehirnaktivitäten, die z.B. zu epileptischen Anfällen führen können, durch körpereigene Cannabinoide gebremst werden. Dabei, so die Forschergruppe um Univ.-Prof. Dr. Beat Lutz vom Institut für Physiologische Chemie und Pathobiochemie, spielen bestimmte Rezeptoren in den Moos-Zellen, einem speziellen Typ von Nervenzellen im Hippocampus, wahrscheinlich eine zentrale Rolle.

"Damit konnten wir die relevante Gehirnregion ermitteln, in der dieser dämpfende Mechanismus über körpereigene Schutzfunktionen wirksam wird", erläutert Lutz. Die Studie wurde in der renommierten Fachzeitschrift Neuron publiziert (Neuron 51: 455-466). Die Ergebnisse dürften dazu beitragen, neue Wege in der Behandlung epileptischer Erkrankungen zu beschreiten und dabei die nützliche Funktion des körpereigenen Cannabinoid-Systems stärker in den Mittelpunkt zu rücken.

In Europa leidet etwa ein Prozent der Bevölkerung unter Epilepsie. Bei dieser Erkrankung handelt es sich um eine lang anhaltende Veränderung des Gehirns, die sich in immer wieder auftretenden epileptischen Anfällen äußern kann. Die Behandlung erfolgt in der Regel medikamentös mit Antiepileptika, allerdings spricht ein Teil der Betroffenen auf die Medikamente nicht an. " Etwa 30 Prozent der Patienten sind therapieresistent, weshalb intensiv an neuen Therapiekonzepten geforscht wird", erläutert Lutz.

Epilepsie kommt durch eine Übererregung von Nervenzellen in verschiedenen Gehirnregionen zustande. Wenn diese Fehlfunktion nicht gehemmt wird, können starke Schädigungen oder sogar ein Absterben der Neuronen folgen. Bereits seit einigen Jahren ist bekannt, dass der Körper über einen eigenen Schutzmechanismus gegen diese Überaktivität verfügt. Dabei können körpereigene Cannabinoide, auch Endocannabinoide genannt, zusammen mit den Cannabinoid-Bindungsstellen des Typs 1 (CB1-Rezeptoren) wichtige Schutzfunktionen vermitteln, sobald sich Neuronen im Gehirn in einem zu stark angeregten Zustand befinden: Bei Übererregung werden Endocannabinoide freigesetzt, um über die CB1-Rezeptoren beruhigend auf diese übermäßig aktivierten Neuronen zu wirken. So stellen also die Endocannabinoide eine Art Dämpfer dar, um die Gehirnaktivität zu normalisieren.

Tiermodelle können sehr hilfreich sein, um die Epilepsie besser zu verstehen und mögliche neue Therapiekonzepte vorzuschlagen. Vergleicht man in einem chemisch induzierten Krampfanfall-Modell Wildtyp-Mäuse mit Mäusen, denen die CB1-Rezeptoren komplett fehlen, wird die Bedeutung dieser Rezeptoren deutlich: Ein Verlust der CB1-Rezeptoren führt zu einer stark gesteigerten Empfindlichkeit, Krampfanfälle zu entwickeln. Hierbei scheinen CB1-Rezeptoren an ganz bestimmten "Schaltstellen" des Gehirns eine wichtige Rolle zu spielen. Dies haben die Wissenschaftler Krisztina Monory, Federico Massa, Giovanni Marsicano (jetzt am INSERM in Bordeaux) und Beat Lutz aus der Physiologischen Chemie zusammen mit kollaborierenden Gruppen in Deutschland, Großbritannien und den USA genauer untersucht.

Normalerweise besteht im Gehirn eine Balance zwischen aktivierenden und hemmenden Signalen. Diese Signale werden im Wesentlichen durch zwei Neuronentypen vermittelt, welche die Neurotransmitter Glutaminsäure bzw. gamma-Aminobuttersäure (GABA) ausschütten. Auf genau diesen beiden Neuronen kommen auch die CB1-Rezeptoren vor. Um festzustellen, wie wichtig die CB1-Rezeptoren an diesen Stellen sind, wurden verschiedene transgene Mauslinien hergestellt, denen die CB1-Rezeptoren auf den Glutaminsäure- bzw. auf den GABA-ausschüttenden Neuronen fehlen. Diese Mauslinien wurden dann bezüglich der Reaktion auf chemisch induzierte, neuronale Übererregung untersucht. Mäuse ohne CB1-Rezeptoren auf den Glutaminsäure-ausschüttenden Neuronen reagierten mit starken epileptischen Anfällen, während die Mäuse ohne CB1-Rezeptoren auf den GABA-ausschüttenden Neuronen keine Veränderungen zeigten. "Das bedeutet, dass CB1-Rezeptoren auf den sogenannten glutamatergen Neuronen in der Großhirnrinde für den Schutz des Gehirns vor Schädigungen nach epileptischen Anfällen äußerst wichtig sind", erläutert Lutz.

Der Hippocampus, ein bestimmter Teil des Kortex, spielt eine entscheidende Rolle bei der Pathogenese der Epilepsie. Deshalb untersuchte die Forschergruppe, ob dies auch die Gehirnregion ist, wo die CB1-Rezeptoren epileptische Anfälle dämpfen können. Durch die lokale Entfernung der CB1-Rezeptoren in nur einem bestimmten Teil des Hippocampus, bekannt als der "Hilus", konnten wiederum verstärkte epileptische Krämpfe beobachtet werden. "Damit haben wir eine kritische Region des Gehirns identifiziert, in der die CB1-Rezeptoren bei übermäßiger neuronaler Aktivität als dämpfender Mechanismus dienen", so Lutz. Immunhistologische und elektrophysiologische Experimente konnten weiter die sogenannten Moos-Zellen, eine glutamaterge Zellpopulation im Hilus, als mögliche zentrale Stelle ausfindig machen. Diese Zellen sind in einen Schaltkreis zwischen Kortex und Hippocampus eingebunden, der bei Epilepsie wahrscheinlich stark gestört ist.

Die Befunde dieser Studie können neue Wege zur Behandlung von neurologischen Krankheiten eröffnen, die mit neuronalen Überaktivitäten einhergehen, wie sie zum Beispiel bei Temporallappenepilepsien (TLE) zu beobachten sind. Ziel zukünftiger Studien wird es nun sein, die Aktivität des Endocannabinoid-Systems pharmakologisch zu verstärken und somit einen erhöhten Schutz gegen Krampfanfälle zu bewirken. "Wenn diese Verstärkung nur in den dafür wichtigen Neuronen, nämlich den glutamatergen Neuronen, gelänge, wäre die Wirkung wahrscheinlich auch sehr viel effektiver und die Gefahr von Nebenwirkungen könnte verringert werden", erwarten die an der Studie beteiligten Wissenschaftler.

Originalarbeit:
Monory K., Massa F., Egertova M., Eder M., Blaudzun H., Westenbroek R., Kelsch W., Jacob W., Marsch R., Ekker M., Long J., Rubenstein J.L., Goebbels S., Nave K.A., During M., Klugmann M., Wolfel B., Dodt H.U., Zieglgänsberger W., Wotjak C.T., Mackie K., Elphick M.R., Marsicano G., Lutz B. (2006). The endocannabinoid system controls key epileptogenic circuits in the hippocampus. Neuron 51: 455-466.
Kontakt und Informationen:
Univ.-Prof. Dr. rer. nat. Beat Lutz
Institut für Physiologische Chemie und Pathobiochemie
Physiologische Chemie
Johannes Gutenberg-Universität Mainz
Tel. 06131 39-25912
Fax 06131 39-23536
E-Mail: beat.lutz@uni-mainz.de

Petra Giegerich | idw
Weitere Informationen:
http://www.uni-mainz.de/FB/Medizin/PhysiolChemie/physiol/physiol_startseite.htm

Weitere Berichte zu: CB1-Rezeptoren Cannabinoide Endocannabinoide Epilepsie Hippocampus Neuron

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics