Seltsame Stäbchen

Unsere alltägliche Erfahrung lehrt uns, dass ein Gegenstand, den man streckt, dünner wird. Drückt man ihn zusammen, wird er dicker. Aber es gibt auch Materialien, die sich so ganz entgegen unserer Intuition verhalten: Sie werden beim Strecken dicker und beim Zusammendrücken dünner. Zu diesen als „auxetisch“ bezeichneten Stoffen zählen einige Schäume und spezielle Kristalle. Forscher von der Bar-Ilan University und dem Israel Institute of Technology haben nun anhand quantenmechanischer Computerberechnungen erstmalig eine chemische Verbindungsklasse identifiziert, die sich bereits auf molekularer Ebene auxetisch verhält.

Werden „normale“ Materialien beispielsweise von einem Ball getroffen, „fließt“ das Material weg von der Aufprallzone und schwächt diese Stelle. In auxetischen Stoffen dagegen „fließt“ das Material in die Aufprallzone hinein und verstärkt diese. Solche Materialien wären der richtige Stoff für kugelsichere Westen. Aber auch für die Medizintechnik ergeben sich interessante Perspektiven. Das Einführen von Implantaten sowie Stents zum Offenhalten von Blutgefäßen ließe sich erleichtern, wenn das Teil unter Druck in Querrichtung dünner statt dicker werden würde.

Bei den bisher bekannten auxetischen Stoffen ist das auxetische Verhalten eine makroskopische Eigenschaft und beruht auf einer speziellen Anordnung der Teilchen innerhalb des Materials, etwa einer bestimmten wabenartigen Struktur. Auxetisches im Nanomaßstab war bisher jedoch unbekannt.

Anhand quantenmechanischer Berechnungen sagt das Team um Shmaryahu Hoz nun voraus, dass es auch bestimmte Moleküle gibt, die sich auxetisch verhalten: Polyprismane nennt sich die Verbindungsklasse. Es handelt sich dabei um stäbchenförmige Moleküle, die aus mehreren aufeinander gestapelten Ringen aus drei, vier, fünf oder sechs Kohlenstoffatomen aufgebaut sind. Die Dreiring- und die Vierring-Prismane zeigen, unabhängig von der Anzahl der gestapelten Ringe, in etwa gleich große auxetische Effekte. Die Fünf- und die Sechsring-Prismane weisen einen deutlich höhreren auxetischen Effekt auf. Von allen durchgerechneten Varianten zeigte das Prisman aus vier Sechsringen den stärksten Effekt. Warum sich Prisman-Moleküle auxetisch verhalten, konnten die Forscher noch nicht eindeutig klären.

„Obwohl Prismane bereits vor mehr als 30 Jahren entdeckt wurden, hat man bisher erst wenige Vertreter dieser Klasse synthetisiert,“ sagt Hoz. „Wir hoffen, dass unsere Erkenntnisse ein Ansporn sein werden, weitere Prismane herzustellen und zu charakterisieren.“

Angewandte Chemie: Presseinfo 33/2006

Angewandte Chemie 2006, 118, No. 36, doi: 10.1002/ange.200601764

Autor: Shmaryahu Hoz, Bar-Ilan University, Ramat-Gan (Israel), http://www.biu.ac.il/CH/faculty/hoz/hozint.html

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany.

Media Contact

Dr. Renate Hoer idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Kombination von Schwerionentherapie und mRNA-Impfstoff

Gemeinsam für die Krebsforschung: TRON und GSI/FAIR untersuchen Kombination von Schwerionentherapie und mRNA-Impfstoff. Es könnte eine neue, vielversprechende Kombination von zwei Therapieansätzen sein und ein Schlüssel, um Krebserkrankungen im fortgeschrittenen…

Partner & Förderer