Genexpressionsanalysen für jeden Organismus – auch ohne DNA-Sonden

Wie unterscheiden sich die aktiven Gene eines gesunden von einem kranken Menschen? Welches Gen wird in einem krebsentarteten Gewebe anders exprimiert als in normalem Gewebe? Welche Gene entscheiden darüber, ob eine Nutzpflanze anfällig für Pilzkrankheiten ist? Antwort auf diese Fragen gibt die differenzielle Genexpressionsanalyse. Der das ganze Transkriptom einer Zelle umfassende molekularbiologische Vergleich von Tumorgewebe mit gesundem beispielsweise kann helfen, so genannte Tumormarker zu identifizieren, also solche Gene, die speziell nur in bestimmtem Krebsgewebe exprimiert werden. Sind diese Gene bekannt, können Tumoren klassifiziert und die Erfolgsaussichten verschiedener Therapieformen beurteilt, in Zukunft sogar spezifische oder individuelle Diagnostika und Therapeutika entwickelt werden.

Das Werkzeug der Wahl für genomweite Genexpressionsstudien ist der DNA-Mikroarray oder DNA-Chip. Dessen großer Nachteil ist jedoch, dass die Gene des zu untersuchenden Organismus vollständig sequenziert und lokalisiert sein müssen. Zudem ist die Herstellung von DNA-Sonden und Mikroarrays aufwändig und teuer. Damit die Möglichkeiten der Genexpressionsanalyse auch jenseits der sequenzierten Modellorganismen wie Mensch, Maus und Hefepilz genutzt werden können, haben Forscher des Fraunhofer-Instituts für Grenzflächen- und Bioverfahrenstechnik IGB, Stuttgart, gemeinsam mit den Firmen GATC, Konstanz, und raytest, Straubenhardt, sowie dem Laboratorium für funktionelle Genomanalyse LAFUGA am Genzentrum München ein universelles Genexpressionsverfahren entwickelt.

Die Technologie beruht auf der gelelektrophoretischen Trennung komplexer cDNA-Proben. Zunächst wird hierfür Gesamt-RNA aus dem Untersuchungsmaterial zu einer doppelsträngigen cDNA umgeschrieben und vervielfacht (amplifiziert), um dann mittels einer zweidimensionalen DNA-Gelelektrophorese aufgetrennt zu werden.

Die Auftrennung der DNA-Fragmente erfolgt dabei zunächst nach Molekulargewicht, dann nach GC-Basengehalt. Im Gel erhält man so ein komplexes Muster so genannter Spots, die durch Färbung mit Fluoreszenzfarbstoffen sichtbar werden. „Vergleicht man die Spotmuster zweier unterschiedlicher Proben desselben Organismus, lassen sich unterschiedlich stark exprimierte cDNAs und damit diejenigen Gene ermitteln, die differenziell transkribiert werden“, erklärt Dr. Kai Sohn, Projektleiter am Fraunhofer IGB.

Der große Vorteil des neuen Verfahrens ist seine universelle Verwendbarkeit. „Wir können jeden beliebigen Organismus aus dem Pflanzen- oder Tierreich untersuchen. Dies schließt die Analyse von Kulturpflanzen, die gegenüber Krankheitserregern resistent sind, genauso ein, wie Studien an Haustieren oder bisher nicht-sequenzierten pathogenen Pilzen“, sagt Sohn. Dabei ist das Verfahren sehr sensitiv. „Für eine Analyse benötigen wir lediglich 1 Mikrogramm Gesamt-RNA – bei einem DNA-Array sind es üblicherweise 25 Mikrogramm. Weiterhin können wir mit unserem Verfahren noch unbekannte, kleine Transkripte identifizieren, die nur unvollständig von DNA-Mikroarrays abgedeckt werden“, hebt Sohn die weiteren Vorzüge der zum Patent angemeldeten Technologie hervor.

Das Verfahren ist daher von besonderem Nutzen für Firmen und Forschungslabore aus Medizin, Biotechnik und Pflanzenzüchtung, die Zielmoleküle (Targets) in komplexen und bisher nur schwer analysierbaren Modellsystemen identifizieren wollen, um sie für die Entwicklung von Diagnostika oder zur Optimierung von Kulturpflanzen einzusetzen.

Ihre Ansprechpartner für weitere Informationen:

Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB
Nobelstraße 12, 70569 Stuttgart, Fax: 07 11 / 9 70-42 00
Dr. Kai Sohn
Telefon: 07 11 / 9 70-40 55
kai.sohn@igb.fraunhofer.de
PD Dr. Steffen Rupp
Telefon: 07 11 / 9 70-40 45
steffen.rupp@igb.fraunhofer.de

Media Contact

Dr. Claudia Vorbeck Fraunhofer-Gesellschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer