Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrokapseln mit Öffner

20.07.2006
Max-Planck-Forscher schleusen Mikrokapseln in Tumorzellen ein und setzen ihren Inhalt dort mit einem Laserimpuls gezielt frei

Medikamente helfen am besten, wenn sie direkt in die kranken Organe oder Zellen gelangen - zum Beispiel in Tumorzellen. Wissenschaftler des Potsdamer Max-Planck-Instituts für Kolloid- und Grenzflächenforschung und der Ludwig-Maximilian-Universität München sind diesem Ziel jetzt einen Schritt näher gekommen: Sie haben eine Substanz gezielt in Tumorzellen freigesetzt: Sie haben den Stoff in winzigen Kapseln verpackt, in die Krebszellen geschleust und dort mit einem Laserimpuls wieder ausgepackt. Das Laserlicht hat die Polymerhüllen geknackt, indem es sie aufheizte und so ihre Moleküle aufbrach (Angewandte Chemie, Juli 2006).


Mikrokapseln in einer Zelle vor (a) und nach (b) Laserbelichtung, Der Pfeil gibt den Fokus des Lasers an. Der Laserstrahl öffnet die Kapseln, so dass diese ihren fluoreszierenden Inhalt ausschütten. Bild: MPI für Kolloid- und Grenzflächenforschung

Die Therapie eines bösartigen Tumors ist eine diffizile Angelegenheit: Einerseits müssen Mediziner auch noch den letzten Rest der Geschwulst zerstören, andererseits möchten sie gesundes Gewebe verschonen. So tötet eine Chemotherapie zwar die kranken Zellen ab, richtet aber auch viel Schaden im Körper an. Also suchen Forscher nach Möglichkeiten, nur die wuchernden Zellen zu zerstören. Erreichen könnten sie das zum Beispiel, indem sie die Substanzen mit Mikrokapseln in die Tumorzellen transportieren und dort freisetzen. Die Forscher um André Skirtach und Gleb Sukhorukov vom Potsdamer Max-Planck-Institut für Kolloid- und Grenzflächenforschung und Wolfgang Parak von der Ludwig-Maximilian-Universität München haben jetzt mit einem Laserstrahl gezielt Mikrokapseln geöffnet, die zuvor in eine Tumorzelle eingedrungen waren. Die Kapseln haben ihren Inhalt, eine fluoreszierende Testsubstanz, daraufhin in die Zelle ausgeschüttet. Wie sich der leuchtende Stoff in der Zelle verteilt hat, haben die Wissenschaftler in einem Lichtmikroskop verfolgt.

Als Vehikel diente den Forschern eine Polymerkapsel mit wenigen Mikrometern Durchmesser. Die Wände der Kapseln bauten sie aus mehreren Schichten geladener Polymere auf - immer abwechselnd eine Lage positiv geladener Moleküle und eine Lage negativ geladener. Das ist zumindest im Labor inzwischen eine gängige Methode, um mikroskopische Transportgefäße für Medikamente, Kosmetika oder Nährstoffe herzustellen, die auch durch Zellmembranen hindurchwandern können. André Skirtach und seine Kollegen haben die Kapseln jetzt mit einer Art Sesam-Öffne-Dich ausgerüstet. Dazu brauchen sie allerdings keine Zauberei, sondern Nanopartikel aus Gold- oder Silberatomen. Sie mischen geladene Metallteilchen unter die Moleküle, aus denen sich die Wände der Bläschen zusammensetzen. Sobald die Tumorzellen die Mikrokapseln aufgenommen haben, bestrahlen sie die Transportbehälter mit einem Infrarotlaser. Da die Metallionen die Wärme des Lichts besonders gut aufnehmen und an ihre Umgebung weitergeben, heizen sich die Wände auf. Dabei werden sie so heiß, dass die Bindungen zwischen den Polymeren der Hülle brechen und die Kapseln schließlich aufreißen.

Einstweilen haben die Wissenschaftler die Methode nur an isolierten Tumorzellen erprobt. "Prinzipiell lassen sich so aber auch Wirkstoffe im Körper freisetzen", sagt Helmuth Möhwald, Direktor am Max-Planck-Institut für Kolloid und Grenzflächenforschung und einer der beteiligten Wissenschaftler. Das liegt auch daran, dass das Licht des Infrarotlasers zumindest einen Zentimeter tief ins Gewebe eindringt. Da es dort kaum absorbiert wird, heizen sich auch die Zellen des Körpers kaum auf. Erst die Metallpartikel in den Mikrokapseln nehmen die Wärme auf. Aber auch nur wenn sich die Mikrokapseln in einer Zelle befinden. Denn nur auf sie wirkt der Laser.

Neben dem thermischen Öffner, haben die Potsdamer und Münchner Wissenschaftler auch einen Weg gefunden, um die Kapseln stabiler zu machen. Einfach indem sie die frisch gebildeten Mikrokapseln leicht erhitzen, wobei der Durchmesser der Hohlkugeln schrumpft. Gleichzeitig lagern sich die Moleküle in ihrer Hülle enger aneinander, so dass die Kapselwände dicker werden und ihren Inhalt sicherer bewahren.

Ein wesentliches Problem müssen Wissenschaftler allerdings noch lösen, ehe sie Medikamente mit Mikrokapseln gezielt in Tumorzellen schleusen können. Die Steuerung für die Mikrokapseln fehlt nämlich noch: "Dazu müsste man auf den Kapseln Merkmale anbringen, die nur die Zielzellen erkennen", sagt Helmuth Möhwald. Nur diese Zellen ließen dann die Mikrokapseln durch ihre Membran schlüpfen.

Originalveröffentlichung:

Andre G. Skirtach, Amudena Muñoz Javier, Oliver Kreft, Karen Köhler, Alicia Piera Alberola, Helmuth Möhwald, Wolfgang J. Parak und Gleb B. Sukhorukov

Laser-Induced Release of Encapsulated Materials inside Living Cells

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff
17.07.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Künstliche neuronale Netze helfen, das Gehirn zu kartieren
17.07.2018 | Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics