Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Taufliege: Topfit selbst bei extremen Flugmanövern

30.11.2001


Eingang ins Tracheensystem einer Taufliege. Die Kurve zeigt, wie das Insekt diese ventilartige Öffnung (Stigma) im Flug oder in Ruhe öffnet und schließt.
Bild: Lehmann


"Science" berichtet über Würzburger Forschungen

Sogar bei extremen Flugmanövern reguliert die Taufliege Drosophila ihre Atemöffnungen so exakt, dass ideale Bedingungen für ihren Stoffwechsel herrschen. Das hat Dr. Fritz-Olaf Lehmann vom Biozentrum der Uni Würzburg herausgefunden. Über die Ergebnisse des Zoologen berichtet das renommierte US-Wissenschaftsblatt "Science" am heutigen Freitag, 30. November.

Insekten atmen nicht über Lungen, sondern über ein weit verzweigtes System von Röhren (Tracheen). Der Luftaustausch mit der Umgebung erfolgt über ventilartige, von Muskeln gesteuerte Öffnungen, die so genannten Stigmen.

Dabei ergibt sich für die Insekten ein Problem: Zusammen mit der Luft aus dem Tracheensystem entweicht kontinuierlich Wasser aus dem Körper, was das Risiko der Austrocknung erhöht. Besonders kritisch wird die Situation beim Fliegen. Dann steigt der Stoffwechsel auf das zehn- bis zwanzigfache des Ruhewerts an - das Insekt muss viel Sauerstoff aufnehmen und viel Kohlendioxid abgeben, gleichzeitig aber den Verlust von Wasser einschränken.

Dr. Lehmann: "Tiere, die im Flug ihre Stigmen weitgehend geschlossen halten, minimieren zwar ihren Wasserverlust, begrenzen aber auch den Austausch von Sauerstoff und Kohlendioxid und vermindern so die Leistung ihrer Flugmuskeln. Dagegen maximieren Tiere, die ihre Stigmen im Flug weit öffnen, den Austausch der Atemgase, verlieren dann aber in trockener Umgebung auch überproportional viel Körperflüssigkeit."

Wie geht die Taufliege Drosophila mit diesem Problem um? Die Experimente des Würzburger Zoologen haben gezeigt, dass die Öffnungsfläche der insgesamt 18 Stigmen beim Fliegen genau den Stoffwechselbedürfnissen des Insekts angepasst ist: Die Taufliege verringert ihren Wasserverlust um bis zu 23 Prozent im Vergleich zu maximal geöffneten Stigmen. Gleichzeitig stabilisiert dieses Verhalten die Konzentrationen von Sauerstoff und Kohlendioxid im Tracheensystem.

Sogar bei maximalen Änderungen der Flugkraft - Dr. Lehmann nennt hier Steigerungen von 88 Prozent infolge von Steuermanövern oder wegen eines erhöhten Körpergewichts (zum Beispiel dann, wenn ein Fliegenweibchen viele Eier in sich trägt) - bleibt der Gasdruck des Sauerstoffs in den Tracheen stabil, nämlich bei im Mittel 19,9 Kilopascal (Kohlendioxid: 1,35). Dieses Ergebnis stütze die frühere Annahme, so der Wissenschaftler, dass der diffusive Gasaustausch durch die Stigmen eine ausreichend hohe Sauerstoffkonzentration in den Flugmuskeln gewährleistet.

Bei kleinen, fliegenden Insekten sei die Anpassung der Stigmenöffnung an die jeweiligen Bedürfnisse als eine Strategie zu betrachten, die den Tieren während einer erhöhten Bewegungsaktivität in trockenen Klimaten ihre hohe biologische Fitness verleiht.

Robert Emmerich | idw

Weitere Berichte zu: Insekt Kohlendioxid Sauerstoff Stigmen Taufliege

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Chemie aus der Luft: atmosphärischem Stickstoff als Alternative
22.10.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

nachricht Bakterien verhindern die Bekämpfung einer Virusinfektion
22.10.2018 | Universitätsklinikum Freiburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Gravitationswellen die Dunkle Materie ausleuchten

Schwarze Löcher stossen zusammen, Gravitationswellen breiten sich durch die Raumzeit aus - und ein riesiges Messgerät ermöglicht es, die Struktur des Universums zu erkunden. Dies könnte bald Realität werden, wenn die Raumantenne LISA ihren Betrieb aufnimmt. UZH-Forschende zeigen nun, dass LISA auch Aufschluss über die schwer fassbaren Partikel der Dunklen Materie geben könnte.

Dank der Laserinterferometer-Raumantenne (LISA) können Astrophysiker Gravitationswellen beobachten, die von Schwarzen Löchern ausgesendet werden. Diese...

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Lehren und Lernen mit digitalen Medien im Fokus

22.10.2018 | Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Chemie aus der Luft: atmosphärischem Stickstoff als Alternative

22.10.2018 | Biowissenschaften Chemie

Gebirge bereiten Boden für Artenreichtum

22.10.2018 | Geowissenschaften

Neuer Wirkstoff gegen Anthrax

22.10.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics