Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das "Duale System" der Zelle

27.11.2001


Abb. 1: Die äußere Form der Tricorn-Protease ist durch eine Oberflächendarstellung angedeutet. Tricorn besitzt insgesamt sechs aktive Zentren, die durch grüne und lila Bälle symbolisiert sind. Die zu einem Zentrum gehörigen Strukturelemente sind in einer vereinfachten Bänderrepräsentation dargestellt. Die unterschiedliche Farbcodierung deutet an, dass sich eine Untereinheit wie ein Mosaik aus fünf in sich besonders kompakten Faltungsdomänen zusammensetzt. Wie in einem Uhrwerk greifen die einzelnen Module ineinander und ermöglichen so das kontrollierte Weiterzerlegen der Proteasom-Schnipsel. Propellerartige Module führen die Proteasom-Schnipsel zum aktiven Zentrum hin (blau) und die im Tricorn entstehenden Minischnipseln wieder weg (gelb).

Grafik: Max-Planck-Institut für Biochemie


Abb. 2: Vereinfachte Darstellung, wie die am intrazellulären Proteinabbau beteiligten Komponenten vermutlich miteinander wechselwirken: Am Produktausgang der Tricorn-Protease, die wie in Abb. 1 ausgerichtet ist, befindet sich die F1-Protease und zerlegt die Minischnipseln aus dem Tricorn in einzelne Aminosäuren. Beladen wird die Tricorn-Protease durch das schematisch dargestellte Proteasom. Tricorn bildet das Herzstück dieser molekularen Degradations-Fabrik.

Grafik: Max-Planck-Institut für Biochemi


Max-Planck-Wissenschaftler entschlüsseln atomaren Bauplan der Tricorn-Protease, der Wiederverwertungsmaschine für zelluläre Abfallprodukte

Das Überleben von Zellen hängt wesentlich davon ab, wie es ihnen gelingt, eigene Ressourcen effizient zu nutzen. Dazu gehört nicht zuletzt die Aufarbeitung, Wiederverwendung oder die Beseitigung unbrauchbarer oder überflüssiger Zellbestandteile. Wissenschaftlern vom Max-Planck-Institut für Biochemie in Martinsried ist es jetzt gelungen, den Bauplan und den Funktionsmechanismus der für diese Arbeit verantwortlichen molekularen Maschine in der Zelle, der Tricorn-Protease, bis ins atomare Detail aufzuklären (nature, 22. November 2001).

Jede lebende Zelle ist ein komplexes System, in dem überflüssig gewordene oder fehlerhafte Komponenten laufend beseitigt werden müssen. Seit längerem war bekannt, dass hierbei das Proteasom eine wichtige Rolle spielt. Es dient gewissermaßen als Reißwolf, der unnötige Zellbestandteile (Proteine) zerkleinert. Allerdings löst das Proteasom das Abfallbeseitigungsproblem noch nicht, sondern verlagert es zunächst nur auf eine andere Ebene, denn es generiert zwar eine Vielzahl von "Proteinschnipseln" (kurze Ketten von etwa acht "Aminosäuren"), die für die Zelle jedoch in der Regel weiterhin noch unbrauchbaren Ballast darstellen. Doch wie in unserem Alltag, kommt es auch in der mikroskopischen Welt der Zellen darauf an, mit den zur Verfügung stehenden Ressourcen effizient zu haushalten. Einmal aus dem Gleichgewicht gebracht, kann das entstehende "Müllproblem" dort zu ernsthaften Krankheiten wie Alzheimer oder Krebs führen. Daher suchten Wissenschaftler weltweit fieberhaft nach der Lösung des zellulären Abfallproblems - und wurden vor etwa fünf Jahren zunächst in "einfachen" archae-bakteriellen Zellen fündig. Eine Forschergruppe um Prof. Wolfgang Baumeister am Max-Planck-Institut für Biochemie in Martinsried konnte damals die Tricorn-Protease identifizieren, ein gigantisches Protein, das die vom Proteasom erzeugten Proteinschnipsel weiter verarbeitet. Wissenschaftlern aus der von Nobelpreisträger Prof. Robert Huber geleiteten Abteilung "Strukturforschung" des selben Max-Planck-Instituts gelang nun der Durchbruch bei der Aufklärung der atomaren Struktur der Tricorn-Protease. Sie förderten einen dreidimensionalen Bauplan von schier erdrückender Komplexität zutage, der schlagartig auch viele neue Details über den Wirkungsmechanismus der Tricorn-Protease verrät.

Die bereits vom Proteasom erzeugten Proteinschnipsel werden trichterartig in die Tricorn-Protease eingespeist und dann - über ein Kanalsystem - an ihre "Werkbank", das so genannte katalytische Zentrum, herangeführt. Dort sorgen zwei "Türsteher" (positiv geladene Aminosäuren) dafür, dass die wackligen Proteasomschnipsel exakt in Position und Orientierung eingespannt werden, damit sie effizient in kleinere Teile zerschnitten werden können. Dazu benutzt das Tricorn eine Salami-Schneide-Technik: Zuerst wird vom hinteren Ende des Proteinschnipsels ein kurzes Stück (zwei oder drei Aminosäuren) abgeschnitten und aus dem Tricorn entfernt. Danach ziehen die beiden Aminosäure-Türsteher den verbleibenden Proteinschnipsel weiter in das Tricorn hinein. Dieser Vorgang wiederholt sich so oft, bis die ursprünglich aus dem Proteasom kommende Aminosäurekette vollständig in kurze Mini-Schnipsel zerlegt ist. Doch was passiert mit diesen im Tricorn anfallenden Mini-Schnipseln? Sie werden durch einen molekularen "Auspuff", ein weiteres Kanalsystem, aus dem Inneren der Tricorn-Protease wieder an ihre Oberfläche geleitet. Bei der Untersuchung dieses ungewöhnlich elastischen Kanalsystems fanden die Martinsrieder Strukturforscher starke Hinweise dafür, dass der Tricorn-Auspuff-Kanal als Eingangstrichter in ein weiteres Protein ("F1") mündet. Dieses F1-Protein wandelt die Mini-Schnipsel aus dem Tricorn in einzelne Aminosäuren um, womit der Abfallwiederverwertungszyklus geschlossen ist. Einzelne Aminosäuren können nämlich von der Zelle wieder dazu verwendet werden, neue Proteine für aktuelle Bedürfnisse herzustellen.

Die Tricorn-Protease verkörpert demnach das Herzstück einer hoch komplexen Demontagestraße für Proteine. Die einzelnen Module sind fließbandartig hintereinander angeordnet, was die Bedeutung der kanalisierten Einspeisung der Proteinschnipsel in die jeweils nächste Demontage-Einheit unterstreicht. Für diese scheinbar aufwändige Infrastruktur haben die Wissenschaftler eine einfache Erklärung: Mit zunehmender Aufspaltung der Proteine (abnehmende Schnipsellänge) steigt die Anzahl der Abfallprodukte. Für die Bewältigung der damit verbundenen logistischen Anforderungen ist eine Fließbandabfertigung die ideale Lösung.

Jetzt wollen die Martinsrieder Wissenschaftler untersuchen, welche Bedeutung die jeweils anfallenden Zwischenprodukte in der Zelle haben. Sie werden dazu - unter Zuhilfenahme der gewonnenen Strukturinformationen - an ausgewählten Elementen des Fließbandes gezielt in die Protein-Demontage eingreifen. Hans Brandstetter, Leiter des Forscherteams, bemerkt dazu: "Davon erhoffen wir uns ein besseres Verständnis der Stresssituationen in der Zelle, bei denen die alltägliche Balance zwischen Abfallvermeidung und Wiederaufbereitung gestört ist." Brandstetter weiter: " Wir haben mit Bewunderung festgestellt, dass die Natur auf molekularer Ebene schon lange über ein ausgetüfteltes Recycling-System verfügt, das wir mit dem ‚Grünen Punkt’ bzw. dem ‚Dualen System’ erst noch erreichen wollen."

Dr. Hans Brandstetter | Presseinformation
Weitere Informationen:
http://www.mpg.de/index.html

Weitere Berichte zu: Aminosäure Proteasom Protein Proteinschnipsel Tricorn Tricorn-Protease Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Die wahrscheinlich kleinsten Stabmagnete der Welt
17.10.2019 | Friedrich-Schiller-Universität Jena

nachricht Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination
17.10.2019 | Universität Ulm

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

Verletzungen des Sprunggelenks immer ärztlich abklären lassen

16.10.2019 | Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Dehnbare Elektronik: Neues Verfahren vereinfacht Herstellung funktionaler Prototypen

17.10.2019 | Materialwissenschaften

Lumineszierende Gläser als Basis neuer Leuchtstoffe zur Optimierung von LED

17.10.2019 | Physik Astronomie

Dank Hochfrequenz wird Kommunikation ins All möglich

17.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics