Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Schaltwerk der Zelle in 3D

16.11.2001


Abb. 1: Die Kerndomäne (G-Domäne) des GTP-bindenden Proteins Ras. Markiert in cyan und grün sind die "switch"-Regionen, die sich stark ändern, wenn GDP gegen GTP ausgetauscht wird. Die Motive DxxG, NKxD, SAK und der P-loop sind an der Nukleotidbindung beteiligt, wichtige Wechselwirkungen zu GTP (in schwarz) sind angedeutet. Weiterhin eingezeichnet sind das gamma-Phosphat (rot) und das Magnesiumion (hellblauer Ball).


Abb. 2: Überlagerung verschiedener GTP-bindender Proteine, die alle die G-Domäne gemeinsam haben (dicker gelber Wurm, die "switch"-Regionen sind wieder in cyan und grün markiert). Man erkennt, wie unterschiedlich die "Anbauteile" an die G-Domäne sind. Der Name des Proteins ist jeweils in gleicher Farbe angegeben.
Grafiken: Max-Planck-Institut für molekulare Physiologie


Dortmunder Max-Planck-Wissenschaftler erläutern Funktion und Struktur eines für die innere Regulation von Zellen zentralen Steuerelements

Wissenschaftler vom Max-Planck-Institut für molekulare Physiologie in Dortmund beschreiben in der internationalen Fachzeitschrift "Science" die Steuerung von Signalketten in lebenden Zellen durch sogenannte GTP-bindende Proteine. Diese "molekularen Schalter" finden sich als steuernde Elemente bei einer Vielzahl ganz unterschiedlicher Signalprozesse in der Zelle. Fallen sie als regulative Einheiten aus oder arbeiten sie nicht exakt, so kann das eine Vielzahl von Krankheiten, wie z.B. Krebs, auslösen.

Eine Zelle ist ein ungeheuer komplexes System. Mehr als fünfzigtausend unterschiedliche Proteine arbeiten mehr oder weniger gleichzeitig an mindestens genauso vielen verschiedenen Regulations- und Stoffwechselprozessen. Substanzen müssen produziert, transportiert oder entsorgt werden. Das Zellskelett wird je nach Bedarf auf- und abgebaut, um es an die jeweilige Umgebung anzupassen. Gleichzeitig muss die Zelle auf Signale von außen - etwa aus dem Blutstrom - richtig reagieren, um beispielsweise eine Zellteilung zu veranlassen. Doch wie schafft es diese biochemische "Fabrik", all ihre Prozesse so zu koordinieren, dass kein Chaos entsteht? Was verhindert, dass kritische Prozesse wie die Zellteilung außer Kontrolle geraten und so zur Entstehung von Tumoren beitragen?

Fortschritte in der Röntgenstrukturanalyse in den letzten Jahren haben erstmals auch zu einem besseres Verständnis der Zellregulation geführt: Von vielen biologisch bedeutsamen Makromolekülen, die an der Regulation der Zellteilung bzw. des Zellstoffwechsels, der Proteinsynthese, des Zytoskeletts, des Kerntransports und des Vesikeltransports beteiligt sind, wurde mittlerweile die dreidimensionale Struktur bis in atomare Details hinein entschlüsselt.

Dr. Ingrid Vetter und Prof. Alfred Wittinghofer vom Max-Planck-Institut für molekulare Physiologie, Dortmund haben den derzeitigen Kenntnisstand über die Steuer- und Regelungsmechanismen in lebenden Zellen zusammengefasst. Von zentraler Bedeutung für die meisten dieser Mechanismen sind Proteine, die die kleinen Moleküle GTP bzw. GDP (Guanosintriphosphat bzw. -diphosphat) binden und deshalb Guaninnukleotid-bindende Proteine (GNBPs) heißen. Allen Guaninnukleotid-bindenden Proteinen gemeinsam ist ein "Kern" mit einer konservierten Struktur, die sogenannte G-Domäne. Hier wird das GTP bzw. GDP gebunden (vgl. Abb. 1). Um diesen Kern herum befinden sich je nach Funktion des jeweiligen Guaninnukleotid-bindenden Proteins - wie in einem Baukastensystem - weitere Proteindomänen (vgl. Abb. 2). Die kleinen Proteine funktionieren dann quasi wie ein Werkzeug, das ganz unterschiedliche Aufgaben ausführen kann, je nachdem welcher Adapter angefügt wird.

Das energiereiche GTP (Guanosintriphosphat) hat die Funktion, den GNBPs eine bestimmte, dreidimensionale Struktur aufzuprägen, die sich deutlich von derjenigen unterscheidet, in der GDP (Guanosindiphosphat) gebunden ist. GTP enthält im Unterschied zu GDP eine dritte Phosphatgruppe, das so genannte gamma-Phosphat. Dieses wirkt wie ein Haken, der eine gespannte Feder hält: Wird das gamma-Phosphat abgespalten, lösen sich bestimmte Teile des Proteins, die zuvor chemisch fixiert waren. Dieser Mechanismus existiert in allen durch GNBPs regulierten Prozessen, wobei diese Prozesse im Detail sehr unterschiedlich sein können: Bei den "kleinen GNBPs" und den so genannten heterotrimeren G-Proteinen kann im Zustand, in dem GTP gebunden ist, z.B. ein Signal zur Zellteilung oder zur Einleitung des Sehprozesses oder einer anderen Sinneswahrnehmung weitergeleitet werden. Dabei bindet das Auslöser-Molekül an das aktivierte GNBP. In dem Zustand, in dem GDP gebunden ist, wird durch die jetzt vorliegende Konformation diese Bindung ausgeschlossen - und das Signal kann nicht weitergeleitet werden. Beim Zellkerntransport bestimmt die Verteilung der GTP-gebundenen Form eines bestimmten GNBPs die Richtung, ob bestimmte Substrate in den Zellkern hinein oder heraus transportiert werden, und liefert so die Triebkraft für diesen Prozess. Bei den Faktoren, die an der Proteinsynthese beteiligt sind, wird die durch den GTP/GDP-Wechsel hervorgerufene, kleine Konformationsänderung dazu benutzt, über einen Hebelarm aus zusätzlichen Proteinteilen eine große Bewegung hervorzurufen. Dies hat durchaus Ähnlichkeit zur Bewegung von Motorproteinen, z.B. dem Myosin im Muskel, zu denen auch tatsächlich ein Verwandtschaftsverhältnis besteht.

Die GNBPs sind also molekulare Schalter, die je nachdem, welches Nukleotid (GTP oder GDP) gebunden ist, zwischen einem "Aus" und einem "Ein"-Zustand hin- und herschalten. Es ist offensichtlich, dass der Ein- und Ausschaltvorgang genau reguliert sein muss, um keine falschen oder zeitlich nicht genau abgestimmten Signale zu übertragen. Diese Aufgabe wird wiederum von speziellen Proteinen übernommen, den GTPase-aktivierenden Proteinen (GAPs) bzw. den Guaninnukleotid-austauschenden Proteinen (GEFs, guanine nucleotide exchange factors). GEFs schalten die GNBPs an, indem sie GDP gegen GTP austauschen. Hierbei setzen sie verschiedene Mechanismen ein, und auch die Strukturen der unterschiedlichen GEFs sind - im Gegensatz zur konservierten GTP-bindenden Kernstruktur - sehr unterschiedlich. GAPs schalten die GNBPs durch eine Beschleunigung der GTP-Hydrolyse (die spontan sehr langsam ist) wieder aus, wiederum mit mindestens zwei verschiedenen Mechanismen und mit Hilfe sehr unterschiedlicher Strukturen. Für diese Prozesse konnten die Wissenschaftler allgemeine, übergeordnete Prinzipien definieren.

Die in den letzten Jahren entschlüsselten dreidimensionalen Strukturen haben also gezeigt, dass die Kerndomäne der GNBPs ein "Thema mit Variationen" ist. Ein konservierter Schalter fungiert als zentrales Bauteil, das nach dem Baukastenprinzip über verschiedene "Anbauteile" mit einer Vielzahl von anderen Proteinen in Wechselwirkung treten kann. Dank dieser Flexibilität können GNBPs zentrale Aufgaben in der Zelle steuern. Viele Details dieses Mechanismus sind noch nicht verstanden, doch einige der Zellregulation zugrundeliegenden Prinzipien konnten von den Max-Planck-Wissenschaftlern herausgearbeitet werden. Sie werden der Erforschung der GNBPs weitere Impulse geben.

Prof. Dr. Alfred Wittinghofer | Presseinformation

Weitere Berichte zu: GDP GNBP GTP Protein Prozess Zelle Zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff
17.07.2018 | Heinrich-Heine-Universität Düsseldorf

nachricht Künstliche neuronale Netze helfen, das Gehirn zu kartieren
17.07.2018 | Max-Planck-Institut für Neurobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics