Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Schaltwerk der Zelle in 3D

16.11.2001


Abb. 1: Die Kerndomäne (G-Domäne) des GTP-bindenden Proteins Ras. Markiert in cyan und grün sind die "switch"-Regionen, die sich stark ändern, wenn GDP gegen GTP ausgetauscht wird. Die Motive DxxG, NKxD, SAK und der P-loop sind an der Nukleotidbindung beteiligt, wichtige Wechselwirkungen zu GTP (in schwarz) sind angedeutet. Weiterhin eingezeichnet sind das gamma-Phosphat (rot) und das Magnesiumion (hellblauer Ball).


Abb. 2: Überlagerung verschiedener GTP-bindender Proteine, die alle die G-Domäne gemeinsam haben (dicker gelber Wurm, die "switch"-Regionen sind wieder in cyan und grün markiert). Man erkennt, wie unterschiedlich die "Anbauteile" an die G-Domäne sind. Der Name des Proteins ist jeweils in gleicher Farbe angegeben.
Grafiken: Max-Planck-Institut für molekulare Physiologie


Dortmunder Max-Planck-Wissenschaftler erläutern Funktion und Struktur eines für die innere Regulation von Zellen zentralen Steuerelements

Wissenschaftler vom Max-Planck-Institut für molekulare Physiologie in Dortmund beschreiben in der internationalen Fachzeitschrift "Science" die Steuerung von Signalketten in lebenden Zellen durch sogenannte GTP-bindende Proteine. Diese "molekularen Schalter" finden sich als steuernde Elemente bei einer Vielzahl ganz unterschiedlicher Signalprozesse in der Zelle. Fallen sie als regulative Einheiten aus oder arbeiten sie nicht exakt, so kann das eine Vielzahl von Krankheiten, wie z.B. Krebs, auslösen.

Eine Zelle ist ein ungeheuer komplexes System. Mehr als fünfzigtausend unterschiedliche Proteine arbeiten mehr oder weniger gleichzeitig an mindestens genauso vielen verschiedenen Regulations- und Stoffwechselprozessen. Substanzen müssen produziert, transportiert oder entsorgt werden. Das Zellskelett wird je nach Bedarf auf- und abgebaut, um es an die jeweilige Umgebung anzupassen. Gleichzeitig muss die Zelle auf Signale von außen - etwa aus dem Blutstrom - richtig reagieren, um beispielsweise eine Zellteilung zu veranlassen. Doch wie schafft es diese biochemische "Fabrik", all ihre Prozesse so zu koordinieren, dass kein Chaos entsteht? Was verhindert, dass kritische Prozesse wie die Zellteilung außer Kontrolle geraten und so zur Entstehung von Tumoren beitragen?

Fortschritte in der Röntgenstrukturanalyse in den letzten Jahren haben erstmals auch zu einem besseres Verständnis der Zellregulation geführt: Von vielen biologisch bedeutsamen Makromolekülen, die an der Regulation der Zellteilung bzw. des Zellstoffwechsels, der Proteinsynthese, des Zytoskeletts, des Kerntransports und des Vesikeltransports beteiligt sind, wurde mittlerweile die dreidimensionale Struktur bis in atomare Details hinein entschlüsselt.

Dr. Ingrid Vetter und Prof. Alfred Wittinghofer vom Max-Planck-Institut für molekulare Physiologie, Dortmund haben den derzeitigen Kenntnisstand über die Steuer- und Regelungsmechanismen in lebenden Zellen zusammengefasst. Von zentraler Bedeutung für die meisten dieser Mechanismen sind Proteine, die die kleinen Moleküle GTP bzw. GDP (Guanosintriphosphat bzw. -diphosphat) binden und deshalb Guaninnukleotid-bindende Proteine (GNBPs) heißen. Allen Guaninnukleotid-bindenden Proteinen gemeinsam ist ein "Kern" mit einer konservierten Struktur, die sogenannte G-Domäne. Hier wird das GTP bzw. GDP gebunden (vgl. Abb. 1). Um diesen Kern herum befinden sich je nach Funktion des jeweiligen Guaninnukleotid-bindenden Proteins - wie in einem Baukastensystem - weitere Proteindomänen (vgl. Abb. 2). Die kleinen Proteine funktionieren dann quasi wie ein Werkzeug, das ganz unterschiedliche Aufgaben ausführen kann, je nachdem welcher Adapter angefügt wird.

Das energiereiche GTP (Guanosintriphosphat) hat die Funktion, den GNBPs eine bestimmte, dreidimensionale Struktur aufzuprägen, die sich deutlich von derjenigen unterscheidet, in der GDP (Guanosindiphosphat) gebunden ist. GTP enthält im Unterschied zu GDP eine dritte Phosphatgruppe, das so genannte gamma-Phosphat. Dieses wirkt wie ein Haken, der eine gespannte Feder hält: Wird das gamma-Phosphat abgespalten, lösen sich bestimmte Teile des Proteins, die zuvor chemisch fixiert waren. Dieser Mechanismus existiert in allen durch GNBPs regulierten Prozessen, wobei diese Prozesse im Detail sehr unterschiedlich sein können: Bei den "kleinen GNBPs" und den so genannten heterotrimeren G-Proteinen kann im Zustand, in dem GTP gebunden ist, z.B. ein Signal zur Zellteilung oder zur Einleitung des Sehprozesses oder einer anderen Sinneswahrnehmung weitergeleitet werden. Dabei bindet das Auslöser-Molekül an das aktivierte GNBP. In dem Zustand, in dem GDP gebunden ist, wird durch die jetzt vorliegende Konformation diese Bindung ausgeschlossen - und das Signal kann nicht weitergeleitet werden. Beim Zellkerntransport bestimmt die Verteilung der GTP-gebundenen Form eines bestimmten GNBPs die Richtung, ob bestimmte Substrate in den Zellkern hinein oder heraus transportiert werden, und liefert so die Triebkraft für diesen Prozess. Bei den Faktoren, die an der Proteinsynthese beteiligt sind, wird die durch den GTP/GDP-Wechsel hervorgerufene, kleine Konformationsänderung dazu benutzt, über einen Hebelarm aus zusätzlichen Proteinteilen eine große Bewegung hervorzurufen. Dies hat durchaus Ähnlichkeit zur Bewegung von Motorproteinen, z.B. dem Myosin im Muskel, zu denen auch tatsächlich ein Verwandtschaftsverhältnis besteht.

Die GNBPs sind also molekulare Schalter, die je nachdem, welches Nukleotid (GTP oder GDP) gebunden ist, zwischen einem "Aus" und einem "Ein"-Zustand hin- und herschalten. Es ist offensichtlich, dass der Ein- und Ausschaltvorgang genau reguliert sein muss, um keine falschen oder zeitlich nicht genau abgestimmten Signale zu übertragen. Diese Aufgabe wird wiederum von speziellen Proteinen übernommen, den GTPase-aktivierenden Proteinen (GAPs) bzw. den Guaninnukleotid-austauschenden Proteinen (GEFs, guanine nucleotide exchange factors). GEFs schalten die GNBPs an, indem sie GDP gegen GTP austauschen. Hierbei setzen sie verschiedene Mechanismen ein, und auch die Strukturen der unterschiedlichen GEFs sind - im Gegensatz zur konservierten GTP-bindenden Kernstruktur - sehr unterschiedlich. GAPs schalten die GNBPs durch eine Beschleunigung der GTP-Hydrolyse (die spontan sehr langsam ist) wieder aus, wiederum mit mindestens zwei verschiedenen Mechanismen und mit Hilfe sehr unterschiedlicher Strukturen. Für diese Prozesse konnten die Wissenschaftler allgemeine, übergeordnete Prinzipien definieren.

Die in den letzten Jahren entschlüsselten dreidimensionalen Strukturen haben also gezeigt, dass die Kerndomäne der GNBPs ein "Thema mit Variationen" ist. Ein konservierter Schalter fungiert als zentrales Bauteil, das nach dem Baukastenprinzip über verschiedene "Anbauteile" mit einer Vielzahl von anderen Proteinen in Wechselwirkung treten kann. Dank dieser Flexibilität können GNBPs zentrale Aufgaben in der Zelle steuern. Viele Details dieses Mechanismus sind noch nicht verstanden, doch einige der Zellregulation zugrundeliegenden Prinzipien konnten von den Max-Planck-Wissenschaftlern herausgearbeitet werden. Sie werden der Erforschung der GNBPs weitere Impulse geben.

Prof. Dr. Alfred Wittinghofer | Presseinformation

Weitere Berichte zu: GDP GNBP GTP Protein Prozess Zelle Zellteilung

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen
21.02.2020 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics