Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Möglichkeiten und Grenzen des Gendoping

11.05.2006
Tübinger Sportmedizin stellt hochsensitives Nachweisverfahren für transgene DNA vor

Spezialisten befürchten seit einiger Zeit die Anwendung genetischer Manipulationen im Spitzensport. Beim so genannten Gendoping wird DNA von leistungsrelevanten Genen in die Körperzellen der Sportler eingeschleust. Diese transgene DNA sorgt dann vor Ort für eine erhöhte Produktion körpereigener leistungssteigernder Stoffe. Möglich wird dies beispielsweise durch die Verwendung geeigneter Viren als Genfähren, die transgene DNA entweder ins menschliche Genom integrieren oder im Zellplasma einlagern können. Das resultierende Genprodukt ist mit der natürlichen Substanz identisch und lässt sich daher nicht nachweisen. Dr. Dr. Perikles Simon von der Abteilung Sportmedizin der Medizinischen Universitätsklinik Tübingen hat jetzt ein Verfahren entwickelt mit dem sich geringste Spuren transgener DNA auch im Blut nachweisen lassen.


Aufsicht auf die Netzhaut einer Ratte: Nervenzelle mit eingeschleustem grünfluoreszierendem Gen einer Tiefseequalle (Aquorea Victoria)
UKT, Dr. Perikles Simon

KONTAKT: Am Samstag, 13. Mai, stellt Dr. med. Dr. rer. nat. Perikles Simon das neue Verfahren bei einem Vortrag an der Berliner Charité (Lange Nacht der Wissenschaften, Campus Berlin Buch, Vortragsraum des Leibniz-Instituts für Molekulare Pharmakologie, C81) um 17.30 Uhr zum Thema "Gendoping: Ein Ausblick auf Möglichkeiten und Grenzen des gentechnologisch unterstützen Betrugs im Hochleistungssport" vor. Interessierte Journalisten können Simon dort am Informationsstand der Sportmedizin zwischen 18.30 und 19.00 Uhr erreichen.

Bei Anwendung der bisher gängigen Gentransferverfahren am Menschen ist davon auszugehen, dass transgene DNA oder Bruchteile derselben in irgendeiner Form im Blut anfallen. Die Menge der im Blut befindlichen tDNA-Moleküle ist dabei prinzipiell davon abhängig wie lange ein Gentransfer zurückliegt und auf welche Weise dieser erfolgte. Ein klassisches Beispiel für ein Gendoping wäre die Vermittlung einer tDNA in Form der genetischen Basenabfolge, welche für das leistungssteigernde (da blutbildende) Protein Erythropoetin kodiert.

Ein direktes Gendoping-Testverfahren sollte in der Lage sein, in einer gängigen Blutprobe von rund zehn ml einige wenige Moleküle transgener DNA spezifisch nachzuweisen. Hieraus erwachsen erhebliche technische Schwierigkeiten. Zunächst einmal ist das Massenverhältnis zwischen der gesamten in der Blutprobe vorhandenen DNA und der transgenen DNA in etwa mit dem Faktor 1014 anzusetzen. Erschwerend kommt hinzu, dass die transgene DNA in einer durchschnittlichen Blutprobe mit rund zwei bis zehn Millionen Molekülen der im Gesamtpool vorhandenen DNA fast identisch ist. Bei diesen fast identischen Molekülen handelt es sich im Konkreten um die Sequenz des in natürlicher Weise in allen Zellen vorhandenen Gens, welches homolog zur vermittelten tDNA ist. Um auf das Beispiel zurück zu kommen, ist eben die tDNA Erythropoetin homolog zur Sequenz des natürlich vorkommenden Erythropoetin-Gens.

Transgene DNA, die dem Menschen erfolgreich vermittelt werden kann, enthält allerdings bestimmte Sequenzabschnitte, die in fast jedem menschlichen Gen vorhanden sind - so genannte Introns - nicht. Mit Hilfe dieses Unterschieds und durch Einsatz und Modifikation der in der Präimplantationsdiagnostik (Reproduktionsmedizin) bereits eingesetzten single cell PCR (Polymerase chain reaction) wurde ein Verfahren entwickelt, dass die wichtigsten dopingrelevanten tDNAs, die bereits in der klinischen und experimentellen Gentherapie verwandt werden, hochsensitiv nachweisen kann.

Wie in der klassischen single cell PCR werden bei dem Verfahren zwei PCR-Durchläufe hintereinander durchgeführt, wobei eine Verdünnung des Ergebnisses des ersten Laufs in einem zweiten Lauf eingesetzt wird. Hierdurch wird auch der Hintergrund an vorhandener Gesamt-DNA herabgesetzt. So genannte Primer sorgen dabei für eine spezifische Erkennung der tDNA und im Rahmen der PCR für eine exponentielle Vervielfältigung der tDNA. Die Primer im ersten und zweiten Durchlauf sind dabei unterschiedlich gewählt, um eine möglichst hohe Spezifität zu erreichen. In Laborversuchen ist es auf diese Weise gelungen, in der Gesamt-DNA aus zwei ml Blut vier Moleküle zuvor zugegebener tDNA des Erythropoetin Gens spezifisch nachzuweisen. Hierfür wurde die tDNA ver-1013-facht, um sie in einfacher Weise in einer Standard-Gel-Elektrophorese sichtbar machen zu können.

Zurzeit befindet sich das Verfahren noch in der Weiterentwicklung. Auf Grund vorgegebener Grenzen, wie beispielsweise dem Volumen der Blutprobe, ist allerdings nur noch von einer bedingten Ausbaufähigkeit für die Sensitivität auszugehen.

Ziel ist es, die Methode so weiter zu entwickeln, dass sie letztendlich auch für den Einsatz als Nachweisverfahren von Gendoping in Frage kommt. Dies ist zwar mit dem Einsatz nicht unerheblicher Ressourcen verbunden, könnte sich aber auch lohnen, wenn man bedenkt, dass der Markt des ethisch in mancherlei Hinsicht als sehr bedenklich eingestuften genetischen enhancements vor Leistungssportlern und Nahrungsmitteln möglicherweise nicht halt macht.

Trotz der im Laborversuch bereits erreichten Sensitivität für den Nachweis von Erythropoetin tDNA bleibt zunächst offen, ob und wie lange sich bei den teilweise sehr unterschiedlichen Gentransferverfahren tDNA im Blut nach-weisen lässt. Im günstigsten Fall weist ein einmal gengedopter Athlet noch auf Jahre hinaus in geringen Mengen tDNA im Blut auf und könnte dann auch Jahre nach erfolgtem Gentransfer überführt werden. Ein positiver Befund kann auch Jahre nach Gentransfer zustande kommen, wenn transfizierte Zellen in größerem Umfang absterben oder auch geschädigt werden - wie beispielsweise Muskelzellen nach starker sportlicher Belastung- und in der Folge tDNA in das Blut freigesetzt wird. Auf diesem Prinzip basiert in der Tumordiagnostik der Direktnachweis tumorspezifischer DNA im Blut und Stuhl.

In jetzt unmittelbar anstehenden Untersuchungen wird das Verfahren zunächst auf seine Spezifität an Sportlern und Normalprobanden getestet. Es gilt in erster Linie zu vermeiden, unschuldige Sportler falsch positiv zu testen.

Ansprechpartner für nähere Informationen

Universitätsklinikum Tübingen
Medizinische Universitätsklinik, Sportmedizin
Dr. med. Dr. rer. nat. Perikles Simon (ab 15.5. wieder in Tübingen erreichbar)
Silcherstr. 5, 72076 Tübingen
Tel. 07071/29-8 51 63, Fax 07071/29-51 62
E-Mail perikles@uni-tuebingen.de

Dr. Ellen Katz | idw
Weitere Informationen:
http://www.medizin.uni-tuebingen.de/

Weitere Berichte zu: Blutprobe DNA Erythropoetin Gen Gendoping Molekül Sportmedizin

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Unordnung kann Batterien stabilisieren
18.09.2018 | Karlsruher Institut für Technologie

nachricht Mit Nano-Lenkraketen Keime töten
17.09.2018 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: Mit Nano-Lenkraketen Keime töten

Wo Antibiotika versagen, könnten künftig Nano-Lenkraketen helfen, multiresistente Erreger (MRE) zu bekämpfen: Dieser Idee gehen derzeit Wissenschaftler der Universität Duisburg-Essen (UDE) und der Medizinischen Hochschule Hannover nach. Zusammen mit einem führenden US-Experten tüfteln sie an millionstel Millimeter kleinen Lenkraketen, die antimikrobielles Silber zielsicher transportieren, um MRE vor Ort zur Strecke zu bringen.

In deutschen Krankenhäusern führen die MRE jährlich zu tausenden, teils lebensgefährlichen Komplikationen. Denn wer sich zum Beispiel nach einer Implantation...

Im Focus: Schaltung des Stromflusses auf atomarer Skala

Forscher aus Augsburg, Trondheim und Zürich weisen gleichrichtende Eigenschaften von Grenzflächenkontakten im ferroelektrischen Halbleiter nach.

Die Grenzflächen zwischen zwei elektrisch unterschiedlich polarisierten Bereichen im Festkörper werden als ferroelektrische Domänenwände bezeichnet. In der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungen

Unbemannte Flugsysteme für die Klimaforschung

18.09.2018 | Veranstaltungen

Studierende organisieren internationalen Wettbewerb für zukünftige Flugzeuge

17.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Auf der InnoTrans 2018 mit innovativen Lösungen für den Güter- und Personenverkehr

18.09.2018 | Messenachrichten

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungsnachrichten

Extrem klein und schnell: Laser zündet heißes Plasma

18.09.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics