Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Quantitative Fluoreszenzmikroskopie per Knopfdruck

25.04.2006
Wissenschaftler aus Göttingen entwickeln neue Methoden zur quantitativen Analyse molekularer Prozesse.

Moleküle sind die Grundbausteine jeden Lebens. Um zu verstehen, wie die Prozesse des Lebens funktionieren - wie zum Beispiel Nervenzellen Informationen kodieren und weiterleiten - ist die Analyse der molekularen Grundlagen solcher Vorgänge unerlässlich. Seit etwa zwei Jahrzehnten nutzen Wissenschaftler so genannte "Imaging Technologien", um mit Hilfe von Fluoreszenzfarbstoffen im lebenden Gewebe molekulare Prozesse sichtbar zu machen und zu beobachten. Mit Farbstoffen, die Kalzium binden, lässt sich zum Beispiel beobachten, dass die Konzentration von Kalziumionen in einer Nervenzelle ansteigt, wenn sie einen Impuls sendet. Am besten werden solche Experimente heute in Gewebsschnitten durchgeführt. Hier waren aber bisher genaue quantitative Aussagen nicht möglich. Mit Hilfe computergestützter Methoden ist es Prof. Dr. Dr. Detlev Schild und seinem Mitarbeiter Tsai-Wen Chen nun gelungen, molekulare Prozesse im lebenden Gewebe genau zu quantifizieren. Die Arbeit wird in der Aprilausgabe der renommierten Zeitschrift "Biophysical Journal" publiziert. Professor Schild ist Direktor der Abteilung Neurophysiologie und zelluläre Biophysik am Bereich Humanmedizin der Universität Göttingen, Bereich Humanmedizin. Er forscht am DFG - Forschungszentrum "Molekularphysiologie des Gehirns (CMPB)" sowie am Bernstein Center for Computational Neuroscience. Tsai-Wen Chen ist PhD - Student des Göttinger internationalen Studiengangs Neuroscience und promoviert in Schilds Arbeitsgruppe.

Ein großes Problem bei der Ermittlung quantitativer Daten aus Fluoreszenzfärbungen bereitet die so genannte Hintergrundfärbung. Fluoreszenzfarbstoff, der unspezifisch am Gewebe bindet, oder Reflexionen in der Optik können dazu beitragen, dass auch dort ein Fluoreszenzsignal gemessen wird, wo die zu untersuchenden Moleküle gar nicht vorhanden sind. Zusätzlich wird die quantitative Bestimmung des Signals durch "Rauschen" gestört. Ursache für das "Rauschen" sind Unregelmäßigkeiten im Fluoreszenzsignal und im Verstärker. Gemeinhin versuchen Wissenschaftler das Hintergrundsignal abzuschätzen, indem sie die Fluoreszenz in einem Bereich des Gewebes messen, der aufgrund theoretischer Überlegungen kein spezifisches Signal haben dürfte. Diese Methode ist aber nicht nur mühsam, sie ist auch recht ungenau.

Prof. Schild und sein Mitarbeiter Chen suchten daher einen anderen Weg zur Hintergrundbestimmung, der nicht von Messungen in benachbarten Regionen abhängig ist. Sie nutzten diese Methode, um die Veränderung der Kalziumionenkonzentration in Nervenzellen genau zu bestimmen. Die Kalziumionenkonzentration, und damit das spezifische Signal, verändern sich mit der Aktivität der Zelle, das Hintergrundsignal hingegen nicht. "Diese Zeitinformation in den Fluoreszenzen haben wir genutzt, um dadurch den Hintergrund herauszurechnen", erläutert Schild.

Gemessen wird die Fluoreszenz an verschiedenen Punkten in einer "region of interest" (ROI), dem Bereich einer Zelle oder eines Gewebes, dessen Kalziumhaushalt der Forscher ermitteln möchte. Die genauen Werte sind an den verschiedenen Messpunkten in der ROI in der Regel unterschiedlich, weil das Mikroskop ein zweidimensionales Bild einer dreidimensionalen Struktur liefert. Diese Unterschiede werden von der neuen Methode ausgenutzt.

"Im Gegensatz zu den absoluten Werten ist aber die Dynamik, mit der sich das spezifische Signal an unterschiedlichen Messpunkten verändert, gleich. Die ROI muss aufgrund theoretischer Überlegungen so gewählt sein, dass diese Voraussetzung gegeben ist", erklärt Schilds Mitarbeiter Chen. So ließe sich dann anhand der zeitlichen Veränderung der Fluoreszenz an verschiedenen Messpunkten sowohl das Hintergrundsignal als auch das Rauschen herausrechnen.

"Die Methode wird eine breite Anwendung finden", ist Prof. Schild uberzeugt. "Um eine genaue Vorstellung davon zu gewinnen, wie eine Zelle Signale interpretiert oder mit welchen Mechanismen Zellen miteinander kommunizieren, ist die Quantifizierung molekularer Daten unerlässlich. Mit der Methode, die Chen und Schild entwickelt haben, lassen sich quantitative Daten nicht nur sehr genau, sondern auch sehr schnell bestimmen. Mikroskophersteller können unsere Methode nun so in ihre Software einbauen, dass der Hintergrund automatisch per Knopfdruck abgezogen wird", so Schild.

Quelle:
Tsai-Wen Chen, Bei-Jung Lin, Edgar Brunner und Detlev Schild (2006). In-situ background estimation in quantitative fluorescence imaging. Biophysics Journal 90(7):2534-47
Weitere Informationen:
Prof. Dr. Dr. Detlev Schild
Abt. Neurophysiologie und zelluläre Biophysik, Zentrum Physiologie und Pathophysiologie
Humboldtallee 23, 37073 Göttingen
Tel. +49 (0)551 / 39-5915 /-8331, Fax +49 (0)551 / 39-8399
dschild@gwdg.de
Gemeinsame Presseinformation vom Bernstein Center for Computational Neuroscience (BCCN) Göttingen und dem Bereich Humanmedizin der Universität Göttingen.

Das BCCN Göttingen ist ein Verbundprojekt der Georg-August-Universität Göttingen, des Max-Planck-Instituts für Dynamik und Selbstorganisation, des Max-Planck-Instituts für biophysikalische Chemie, dem Deutschen Primaten Zentrum und der Otto Bock HealthCare GmbH.

Die Bernstein Centers for Computational Neuroscience (BCCN) sind vier vom BMBF geförderte Zentren in Berlin, Freiburg, Göttingen und München. In dem interdisziplinären Netzwerk werden Experiment, Datenanalyse und Computersimulation auf der Grundlage wohl definierter theoretischer Konzepte vereint. Zentrales Anliegen der Computational Neuroscience ist die Aufklärung der neuronalen Grundlagen von Hirnleistungen, die so z.B. zu neuen Therapien bei neurodegenerativen Krankheiten und Innovationen in der Neuroprothetik führen.

Dr. Tobias Niemann | idw
Weitere Informationen:
http://www.bernstein-zentren.de
http://www.bccn-goettingen.de/
http://ukmn.gwdg.de/

Weitere Berichte zu: BCCN Fluoreszenz Gewebe Hintergrundsignal Humanmedizin Messpunkte Nervenzelle ROI Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

nachricht Einbahnstraße für das Salz
21.09.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue CBMC-Geräteschutzschaltervarianten

22.09.2018 | Energie und Elektrotechnik

ISO-27001-Zertifikat für die GFOS mbH und die GFOS Technologieberatung GmbH

21.09.2018 | Unternehmensmeldung

Kundenindividuelle Steckverbinder online konfigurieren und bestellen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics