Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Wirkungsweise eines Naturgiftes entschlüsselt

13.04.2006


Untersuchung der Struktur eines Toxin-Ionenkanal-Komplexes. Mittels Festkörper-NMR wurde untersucht, welche Wirkung Kaliotoxin, das Gift eines nordafrikanischen Skorpions (Bild links), auf einen bakteriellen Kalium-Kanal hat. Durch Analyse der Festkörper-NMR Daten der spin-markierten Proben vor und nach der Komplexbildung (rot bzw. grün, Bild oben) haben die Forscher ein strukturelles Modell der Bindungstasche entwickelt (Bild unten). Das Toxin beziehungsweise die rot markierten Bereiche des Kanalporteins werden bei der Bindung beeinflusst, die blauen Bereiche nicht. Bild: Max-Planck-Institut für biophysikalische Chemie/ZMNH


Internationales Forscherteam macht erstmals sichtbar, wie Giftstoffe an Kaliumkanäle binden und deren interne Struktur verändern


Bisse und Stiche von Schlangen, Spinnen und Skorpionen sind oft tödlich. Dabei werden im Körper des Opfers Giftstoffe freigesetzt, die dann an Ionenkanäle in der Zellmembran binden. Was genau dabei passiert, haben jetzt Wissenschaftler des Max-Planck-Instituts für biophysikalische Chemie zusammen mit deutschen und französischen Kollegen aufgedeckt. Mit einer Kombination aus magnetischer Resonanzspektroskopie (Festkörper-NMR) mit speziellen Protein-Syntheseverfahren konnten sie zeigen, dass sich sowohl die Struktur des Kaliumkanals selbst als auch des Toxins ändert, wenn diese sich zu einem Komplex verbinden. Diese Befunde könnten helfen, wirksamere Medikamente gegen Bluthochdruck und andere Krankheiten zu entwickeln, die mit Fehlfunktionen von Kalium-Kanälen zusammenhängen (Nature, 13. April 2006).

Die Zellen unseres Körpers sind von Membranen umgeben, in die wiederum Ionenkanäle eingebettet sind. Hierbei handelt es sich um spezielle Proteine, die es ganz bestimmten Ionen erlauben, die Zellmembran zu durchqueren. Dadurch baut sich ein elektrochemisches Gefälle auf, so dass Signale von Nerven- oder Herzmuskelzellen weitergeleitet werden können. Wird eine solche Zelle erregt, ändert sich die Struktur ihrer Ionenkanäle: Diese bilden Poren, durch die Ionen passieren können. So gibt es beispielsweise Kalium-Kanäle, also Proteine, die nur für Kalium-Ionen durchlässig sind. Deshalb sind sie Angriffsziel hochspezifische Toxine vieler giftiger Tiere. Diese Toxine interagieren mit den Kalium-Kanälen in den Zellen des Opfers, so dass elektrische Signale nicht mehr weitergeleitet werden, was oft zum Tode führt.


Solche Wechselwirkungen sind auf struktureller Ebene bisher nur unzureichend untersucht, obwohl man mithilfe der Röntgenkristallographie bereits große Fortschritte bei der Erforschung der Ionenkanäle erzielt hat. Deshalb haben sich die Wissenschaftler vom Max-Planck-Institut für biophysikalische Chemie in Göttingen zusammen mit Forschern des Instituts für Neurale Signalverarbeitung in Hamburg und französischen Kollegen der Universität Marseille etwas einfallen lassen: Sie kombinierten neue Methoden der magnetischen Resonanzspektroskopie (Festkörper-NMR) mit bestimmten Protein-Syntheseverfahren und untersuchten am Beispiel des Gifts des nordafrikanischen Skorpions Androctonus mauretanicus mauretanicus, wie bakterielle Kalium-Kanäle mit einem Toxin auf atomarer Ebene in Wechselwirkung treten.

Nach der elektrophysiologischen Charakterisierung des "vergifteten" Kanalproteins stellten die Forscher davon spin-markierte Proteine her und untersuchten diese dann mittels Zweidimensionaler Festkörper-NMR. Die Kohlenstoff- und Stickstoffatome solcher Proteine besitzen ein intrinsisches magnetisches Moment (spin), das der Signalverstärkung im NMR dient. Die Forscher verglichen dann die spektroskopischen Daten vor und nach der Einwirkung des Toxins auf den Kanal. Dabei zeigte sich, dass das Gift an einen ganz bestimmten Bereich des Kanals - die Porenregion - bindet und deren Struktur verändert. Doch auch die NMR-Signale des Toxins hatten sich verändert. Das deutet darauf hin, dass es nur dann wirksam ist, wenn es eine bestimmte Aminosäuresequenz des Ionenkanals erkennt. Auch die intrinsische Flexibilität der Bindungspartner spielt dabei eine wichtige Rolle: Für eine starke Wechselwirkung der Moleküle müssen beide Partner offensichtlich in der Lage sein, ihre Struktur zu verändern.

Die angewandten neuen spektroskopischen Methoden leisten einen wichtigen Beitrag zum Verständnis der Pharmakologie und Physiologie von Kalium-Kanälen und könnten helfen, wirksamere und zugleich spezifischere Medikamente herzustellen.
[MB/AT/LM]

Originalveröffentlichung:

Adam Lange, Karin Giller, Söhnke Hornig, Marie-France Martin-Eauclaire, Olaf Pongs, Stefan Becker, Marc Baldus
Toxin-induced conformational changes in a potassium channel revealed by solid-state NMR

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Festkörper-NMR Ionenkanal Kalium-Kanälen Protein Toxin

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neues aus der Schaltzentrale
18.07.2018 | Karl-Franzens-Universität Graz

nachricht Chemische Waffe durch laterale Gen-Übertragung schützt Wollkäfer gegen schädliche Pilze
18.07.2018 | Johannes Gutenberg-Universität Mainz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vernetzte Beleuchtung: Weg mit dem blinden Fleck

18.07.2018 | Energie und Elektrotechnik

BIAS erhält Bremens größten 3D-Drucker für metallische Luffahrtkomponenten

18.07.2018 | Verfahrenstechnologie

Verminderte Hirnleistung bei schwachem Herz

18.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics