Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Mehr Licht!" ins Dunkel der frühen Zellevolution

30.03.2006
Als Goethe starb, soll er gesagt haben: "Mehr Licht!". Ob als Bitte oder Beobachtung, bleibt ungeklärt. Heutige Evolutionsforscher sind auf der intensiven Suche nach "Mehr Licht!", wenn es darum geht, die graue Vergangenheit der Urzellen zu beleuchten.

Als besonders schwierig gilt die Suche nach einer zutreffenden Beschreibung des evolutionären Übergangs von den Prokaryoten (den bakterienartigen Zellen) zu den Eukaryoten - den höherentwickelten Zellen, die stets einen Zellkern besitzen und zugleich die einzelligen Ur-Ur-Urahnen des Menschen sind. Neuigkeiten zum Thema berichtet jetzt der Evolutionsbiologe Prof. Dr. William Martin (Institut für Botanik III der Heinrich-Heine-Universität Düsseldorf) gleich zweimal in der international angesehenen Fachzeitschrift "Nature" (2. März, S. 41- 45 und in der Ausgabe vom 30. März).

Im ersten Beitrag beschreibt er zusammen mit Eugene Koonin vom amerikanischen National Institute of Health, wie eine Besonderheit der Genorganisation der Eukaryoten, die sog. Introns, den mechanistischen Antrieb zur Entstehung des Zellkerns geführt haben kann.

Introns in eukaryotischen Genen kennt man seit rund 30 Jahren. Sie unterbrechen die Genstruktur und mŸssen auf dem Wege der Realisierung (Expression) der genetischen Information mühsam entfernt (herausgespleisst) werden.

Die Vorstellung, dass Introns für die komplexe Zellkompartimentierung der Eukaryoten ursächlich waren, ist grundlegend neu, und läuft einem seit Jahrzehnten etablierten Dogma der Zellevolution scharf entgegen. Bisher herrschte eine nahezu unangefochtene Vorstellung in der Fachwelt, dass zuerst der Kern entstand, dann die Mitochondrien (die energieliefernden Kraftwerke eukaryotischer Zellen).

Martins Theorie zufolge ist genau das Gegenteil der Fall: Zuerst die Mitochondrien, aus deren Genen die molekularen Vorfahren der Introns stammen, dann der Kern. Stellt dies die traditionelle Sicht der Zellevolution auf den Kopf? Martin sagt: "Ja." Um die Entstehung just jener Mitochondrien geht es in seinem zweiten Beitrag, der gemeinsam mit T. Martin Embley von der Universität Newcastle (UK) verfasst wurde. Die Mitochondrien sind vor mehr als einer Milliarde Jahre aus einer Symbiose hervorgegangen: Ein freilebendes Bakterium ist in eine Wirtszelle eingewandert. Aber was genau war diese Wirtszelle?

Der bisherigen Lehrmeinung zufolge war sie ein primitiver Eukaryot. Wenn das so wäre, dann müsste es heute Zellen geben, die einen Kern aber keine Mitochondrien besitzen. Dies haben Biologen zwar lange geglaubt, aber zu unrecht, wie im neuen Beitrag erklärt wird. Bei den Zellen, wo man bislang das völlige Fehlen der Mitochondrien vermutet hat, sind jedoch welche vorhanden!

Aber im Gegensatz zu den Mitochondrien des Menschen sind sie nicht an der Atmung beteiligt, sondern sie bilden Wasserstoff (die Hydrogenosomen) oder essentielle Eisen-Schwefel Cofaktoren (die Mitosomen). Die evolutionäre Signifikanz dieser besonderen Formen der Mitochondrien, die bei den anaeroben (Sauerstoff-meidenden) Eukaryoten vorkommmen, wurde lange von der Fachwelt bezweifelt. Martin ist der Ansicht, dass genau im anaeroben Stoffwechsel der Hydrogenosomen (und Mitosomen) der Schlüssel zur Entstehung der Eukaryoten und damit zur Entstehung der höheren Lebensformen liegt.

Die neuen Arbeiten zeichnen ein ganz anderes Bild der frühen Zellevolution, als heute in den meisten Lehrbüchern zu finden ist.

Sie messen dem Prinzip der Symbiose eine sehr viel wichtigere Rolle in der Entstehung der Eukaryoten zu, als man bisher angenommen hat. Da die menschliche Entwicklungslinie letztendlich auch bei der Entstehung der Eukaryoten anfängt, ist die Suche nach "Mehr Licht!" in der Zellevolution auch ein Versuch, unsere eigenen Wurzeln im Stammbaum des Lebens besser auszuleuchten. Dazu Martin: "Im Prinzip ja, solange man nicht darauf beharrt, alle Prozesse in der Evolution als Baum zu verstehen, weil man es bei der Symbiose nicht mit einer Verästelung, sondern mit einer Wiedervereinigung zu tun hat."

Prof. Martin’ Arbeiten werden von der DFG im Rahmen des bundesweit ersten Transregio-Sonderforschungsbereichs "Endosymbiose: Vom Prokaryoten zum eukaryotischen Organell" gefördert.

Kontakt: Prof. Dr. William Martin , e-mail : w.martin@uni-duesseldorf.de , web: http://www.molevol.de

Rolf Willhardt | idw
Weitere Informationen:
http://www.uni-duesseldorf.de/
http://www.molevol.de

Weitere Berichte zu: Eukaryot Introns Mitochondrium Symbiose Zellevolution

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forscher der Universität Münster gewinnen neue Einblicke in die Evolution von Proteinen
22.10.2019 | Westfälische Wilhelms-Universität Münster

nachricht Die nackte Wahrheit: Wenn ein Mikroorganismus seine Hüllen fallen lässt
22.10.2019 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hohlraum vermittelt starke Wechselwirkung zwischen Licht und Materie

Forschern ist es gelungen, mithilfe eines mikroskopischen Hohlraumes eine effiziente quantenmechanische Licht-Materie-Schnittstelle zu schaffen. Darin wird ein einzelnes Photon bis zu zehn Mal von einem künstlichen Atom ausgesandt und wieder absorbiert. Das eröffnet neue Perspektiven für die Quantentechnologie, berichten Physiker der Universität Basel und der Ruhr-Universität Bochum in der Zeitschrift «Nature».

Die Quantenphysik beschreibt Photonen als Lichtteilchen. Will man ein einzelnes Photon mit einem einzelnen Atom interagieren lassen, stellt dies aufgrund der...

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Freiburger Forschenden gelingt die erste Synthese eines kationischen Tetraederclusters in Lösung

Hauptgruppenatome kommen oft in kleinen Clustern vor, die neutral, negativ oder positiv geladen sein können. Das bekannteste neutrale sogenannte Tetraedercluster ist der weiße Phosphor (P4), aber darüber hinaus sind weitere Tetraeder als Substanz isolierbar. Es handelt sich um Moleküle aus vier Atomen, deren räumliche Anordnung einem Tetraeder aus gleichseitigen Dreiecken entspricht. Bisher waren neben mindestens sechs neutralen Versionen wie As4 oder AsP3 eine Vielzahl von negativ geladenen Tetraedern wie In2Sb22– bekannt, jedoch keine kationischen, also positiv geladenen Varianten.

Ein Team um Prof. Dr. Ingo Krossing vom Institut für Anorganische und Analytische Chemie der Universität Freiburg ist es gelungen, diese positiv geladenen...

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitales-Krankenhaus – wo bleibt der Mensch?

21.10.2019 | Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Forscher der Universität Münster gewinnen neue Einblicke in die Evolution von Proteinen

22.10.2019 | Biowissenschaften Chemie

Die nackte Wahrheit: Wenn ein Mikroorganismus seine Hüllen fallen lässt

22.10.2019 | Biowissenschaften Chemie

Es war wirklich der Asteroid

22.10.2019 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics