Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Riesenmoleküle in sanftem Landeanflug

23.03.2006
Deutsch -Italienischem Forscherteam gelingt es erstmals, synthetische Makromoleküle zu organischen Halbleitern zu verarbeiten.

Elektronische Chips sind heute schon Massenware. Und sie sollen noch preiswerter werden: Die organische Elektronik soll es möglich machen. Wissenschaftler am Max-Planck-Institut für Polymerforschung in Mainz haben jetzt zusammen mit italienischen Forschern eine Methode entwickelt, um organische Moleküle verarbeiten zu können, die nicht löslich sind und sich auch nicht verdampfen lassen. So ließen sich aus ihnen beispielsweise elektronische Bauteile herstellen. Die Forscher haben große Graphit-Moleküle mit einer speziellen Methode der Massenspektroskopie verdampft und anschließend sanft landen lassen. Dabei ordneten die Teilchen sich in leitfähigen Schichten an. (Nature Materials, 12. März 2006)


Unter dem Rastertunnelmikroskop offenbaren die Molekülschichten ihre Struktur. Die Pfeile markieren die unterschiedlichen Orientierungen der Moleküle. Bild: Max-Planck-Institut für Polymerforschung


Die sechseckigen Moleküle stehen nach der sanften Landung mit ihren Kanten auf dem leitfähigen Untergrund und ordnen sich wie Dominosteine in Reihen an. Dabei stellen sie sich in zwei verschiedenen Richtungen auf. Bild: Max-Planck-Institut für Polymerforschung

Computerchips und andere elektronische Bauelemente bestehen heute noch größtenteils aus Silizium - einem anorganischen Halbleiter. Für neue Anwendungen müssen sie aber noch preiswerter werden: Dann könnten sie sich hinter jedem Preisschild verstecken, als Sensoren in unserer Kleidung arbeiten oder als elektronische Wasserzeichen Dokumente sichern. Chips aus organischen Materialien könnten das ermöglichen. Denn auch viele organische Moleküle taugen als Leiter oder Halbleiter. Dabei gilt: Je größer die Teilchen, umso leitfähiger. Große organische Moleküle weisen jedoch eine starre und komplexe Struktur auf, die sie unlöslich macht und die beim Verdampfen zerstört wird. Um aus ihnen Bauelemente produzieren zu können, müssen Moleküle aber im gelösten oder gasförmigen Zustand vorliegen. Wenn Wissenschaftler also die elektrischen Eigenschaften von Molekülen verbessern, erschweren sie sich somit automatisch die Handhabung.

Die Forschungsgruppe von Prof. Klaus Müllen und Dr. Hans Joachim Räder vom Max-Planck-Institut für Polymerforschung hat jetzt eine Methode entwickelt, um extrem große polyzyklische aromatische Kohlenwasserstoffe zu verarbeiten. Dazu entwickelten die Mainzer Wissenschaftler zunächst eine modifizierte Methode der Matrix-unterstützten-Laserdesorptions/Ionisations (MALDI) Massenspektrometrie, mit der die unlöslichen Riesenmoleküle schon heute zuverlässig nachgewiesen und charakterisiert werden können. Die MALDI-Massenspektrometrie ermöglicht es, auch große Moleküle unzersetzt als geladene Teilchen in die Gasphase zu überführen. Dabei werden die Moleküle von einer Matrix anderer Teilchen umhüllt, die mit ihnen verdampfen und die überschüssige Energie schlucken, die das Molekül sonst zerstören würde. Die dabei gebildeten Ionen werden anschließend in einem elektrostatischen Feld beschleunigt und in einem Magnetfeld nach ihrem Molekulargewicht aufgetrennt. Das geschieht im Grunde in jedem Massenspektrometer.

Um die Moleküle wohlbehalten auf einer Oberfläche abzuscheiden, bremsen die Polymerforscher die mit mehrfacher Ultraschallgeschwindigkeit fliegenden Moleküle wieder ab. Sie lassen die Moleküle auf einer Oberfläche sanft landen, so dass sie nicht wie üblich zerschellen, wenn sie auf einen Detektor prallen. Möglich wird diese sanfte Landung, weil ein elektrostatisches Bremsfeld die Moleküle verlangsamt. Den Max-Planck-Forschern gelang es damit jetzt erstmals, ultradünne kristalline Schichten auch von sehr großen Molekülen auf einem leitfähigen Substrat herzustellen. So erzeugten sie Filme, die jeweils aus aromatischen Molekülen mit 42 und 96 Kohlenstoffatomen bestanden. Die größeren der beiden Moleküle haben sie so zum ersten Mal zu Schichten aneinander gelagert. Filme aus den Graphit-Molekülen mit 42 Kohlenstoffatomen ließen sich zwar auch schon mit den gängigen Methoden produzieren, die mit gasförmigen oder gelösten Teilchen arbeiteten. Anders als bei diesen landeten die plättchenförmigen Moleküle bei dem neuen Verfahren aber nicht flach auf dem leitfähigen Untergrund, sondern mit ihren Kanten. Sie ordneten sich also nicht wie die Teile eines Puzzles an, sondern eher wie Dominosteine in einer Reihe.

Das stellten italienische Wissenschaftler des Consiglio Nazionalle delle Ricerche in Bologna fest, als sie die Schichten mit einem Rastertunnelmikroskop charakterisierten. Für mögliche Anwendungen als Halbleiter, ist es sehr günstig, dass sich die Moleküle hintereinander aufreihten. Dann sind die Ladungsträger nämlich besonders beweglich, weil die Elektronenwolken dabei sehr gut überlappen.

Da ein Massenspektrometer die ionisierten Moleküle nach ihrem Masse/Ladungsverhältnis trennt, liegen sie außerdem in hochreiner Form vor. Somit gelang es den Forschern, isotopenreine Proben der großen Graphitmoleküle zu erzeugen. Gerade um elektronische Bauteile herzustellen, ist diese Reinigung von enormer Bedeutung, da unlösliche und nichtflüchtige Verbindungen mit konventionellen Methoden nicht zu reinigen sind. Mit dem neuentwickelten Verfahren lassen sich nun auch neue Substanzklassen in der organischen Elektronik einsetzen. Außerdem könnte es zukünftig helfen, die bisher wenig zugängliche Chemie von Makromolekülen im festen Zustand besser zu erforschen.

[KM]

Originalveröffentlichung:

Hans Joachim Räder, Ali Rouhanipour, Anna Maria Talarico, Vincenzo Palermo, Paolo Samorì and Klaus Müllen
Processing of giant graphene molecules by soft-landing mass spectrometry
Nature Materials, 12 March 2006

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de/

Weitere Berichte zu: Halbleiter Molekül Riesenmoleküle Schicht Teilchen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HZDR-Forscher entwickeln Tarnkappen-Technologie für leuchtende Nanopartikel
13.11.2018 | Helmholtz-Zentrum Dresden-Rossendorf

nachricht Ein Chip mit echten Blutgefäßen
13.11.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: Optimierung von Legierungswerkstoffen: Diffusionsvorgänge in Nanoteilchen entschlüsselt

Ein Forschungsteam der TU Graz entdeckt atomar ablaufende Prozesse, die neue Ansätze zur Verbesserung von Materialeigenschaften liefern.

Aluminiumlegierungen verfügen über einzigartige Materialeigenschaften und sind unverzichtbare Werkstoffe im Flugzeugbau sowie in der Weltraumtechnik.

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Im Focus: Datensicherheit: Aufbruch in die Quantentechnologie

Den Datenverkehr noch schneller und abhörsicher machen: Darauf zielt ein neues Verbundprojekt ab, an dem Physiker der Uni Würzburg beteiligt sind. Das Bundesforschungsministerium fördert das Projekt mit 14,8 Millionen Euro.

Je stärker die Digitalisierung voranschreitet, umso mehr gewinnen Datensicherheit und sichere Kommunikation an Bedeutung. Für diese Ziele ist die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

Profilierte Ausblicke auf die Mobilität von morgen

12.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

MagicMoney: Offline bezahlen – mit deinem Smartphone

13.11.2018 | Wirtschaft Finanzen

5G sichert Zukunft von Industrie 4.0 – DFKI mit der SmartFactoryKL auf der SPS IPC Drives

13.11.2018 | Messenachrichten

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics