Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wissenschaftler entdecken Enzyme, die beschädigtes genetisches Material duplizieren können

12.11.2000


... mehr zu:
»Bakterien »DNS »Enzym »Zelle
Mögliche Anwendungen dieser am Weizmann Institut gemachten Entdeckung sind: Bekämpfung der wachsenden Ausbreitung Antibiotika-resistenter Bakterien und Rekonstruktion antiker DNS oder beschädigter
DNS an Verbrechenstatorten.

Genetisches Material (DNS) wird täglich durch Umweltfaktoren wie Sonneneinstrahlung oder die Einwirkung bestimmter Schadstoffe sowie natürliche Vorgänge innerhalb der Zelle beschädigt. Diese Schäden können zu einem Chaos führen, wenn die genetischen ’Buchstaben’, die gewisse Eigenschaften eines Organismus kodieren, durcheinander geraten oder gelöscht werden. Bleibt eine Korrektur aus, wird die mutierte DNS weiter repliziert, was zu einer fehlerhaften Proteinproduktion und Krankheit führen kann. Zum Glück verfügen alle Organismen über verschiedene DNS-Reparatursysteme in den Zellen. In den meisten Fällen jedoch arbeiten sie nach dem Schema ’Alles oder Nichts’: Kann die beschädigte Stelle nicht korrigiert werden, stellen sie die Arbeit ein und bringen die genetische Replikation zum Stillstand. Das Endergebnis, das sogar schlimmer als der ursprüngliche Schaden ist, ist der Zelltod.

Der Schlüssel zum Leben liegt daher in der ’Kompromissbereitschaft’ der Zelle, die eine gewisse ’Schludrigkeit’ der DNS-Reparatursysteme zulässt und eine kleine Anzahl von Mutationen in Kauf nimmt. Dies stellt zwar ein gewisses Risiko dar, sichert aber andererseits die weitere Existenz der Zelle. Wichtig ist dabei auch, dass dieser Vorgang die genetische Diversitaet erhöht und natürliche Auslese, die treibende Kraft der Evolution, ermöglicht.

Prof. Zvi Livneh von der Abteilung Biologische Chemie des Weizmann Instituts hat eine Gruppe von Enzymen entdeckt, die nach einem solchen Mechanismus arbeiten. Seine jüngsten Ergebnisse werden in der Zeitschrift Proceedings of the National Academy of Sciences (PNAS USA) vorgestellt.

Genetisches Material wird ständig dupliziert - integraler Bestandteil der Zellteilung und -reproduktion aller Lebewesen. Bei der Teilung öffnet die Zelle die DNS-Doppelhelix (die aus einem zusammengewundenen Doppelstrang passender Basenpaare besteht), und benutzt dann jeden Einzelstrang als Vorlage für die direkte Bildung eines neuen Gegenübers. Die Aufsicht über diesen Vorgang hat ein einzigartiges Enzym, DNS-Polymerfase, das auf dem Originalstrang entlangfährt - ähnlich wie ein Zug auf einer einzigen Schiene - und die genetische Sequenz liest, um den passenden Gegenstrang zu bilden. Das Resultat, das herkoemmlicherweise mit beachtlicher Präzision erreicht wird, sind zwei identische DNS-Moleküle, die jeweils aus einem Original- und einem neu synthetisierten Strang bestehen. Stößt das Enzym auf beschädigte DNS, steht es still und lässt die besondere ’Truppe zur Schadensbekämpfung’ ans Werk. Prof. Livneh hat kürzlich einen dieser DNS-Reparaturmechanismen entdeckt, der sich auf eine bisher unbekannte Gruppe von Polymerase-Enzymen stuetzt. Auch diese Enzyme duplizieren genetisches Material, doch sie halten normalerweise nicht an, wenn sie auf beschädigte DNS stoßen. Stattdessen duplizieren sie das Material, wobei oft neue Mutationen entstehen.

Laut Livneh ist diese Familie von Enzymen, die sowohl beim Menschen als auch bei Bakterien vorkommt, eine der wichtigsten Faktoren zur Vermeidung unnötiger Zellzerstörung und eine treibende Kraft im Prozess der Evolution. Der Nachteil ist jedoch, dass sie den Bakterien die rasche Entwicklung neuer genetischer Eigenschaften ermöglichen, womit diese Enzyme auch für den Anstieg bakterieller Antibiotika-Resistenz verantwortlich sind. Die jüngste Entdeckung eines bestimmten Mitglieds dieser Enzymfamilie, der so genannten DNS-Polymerase R1, am Weizmann Institut, könnte neue Interventionsmöglichkeiten gegen diese wachsende Bedrohung eröffnen. Durch die Unterdrückung der Aktivität von R1 und anderen ähnlichen DNS-Polymerasen könnte es möglich sein, die Verbreitung Antibiotika-resistenter Bakterien einzudämmen. Eine andere mögliche Anwendung ist die Rekonstruktion beschädigter DNS, die an Verbrechenstatorten zurückgelassen wurde, oder historischer DNS, die sich in den Überresten prähistorischer Pflanzen und Tiere findet. Diese zwei Formen der DNS sind oft beschädigt (zum Beispiel durch Putzmittel, die die Indizien am Tatort beseitigen sollten, oder schlicht durch den Zahn der Zeit im Fall historischer DNS).

’Frühere Rekonstruktionsversuche mit bekannten DNS-Polymerasen wurden oft behindert, da selbst begrenzte DNS-Schäden die Enzyme zur Unterbrechung ihrer Arbeit zwingt, was den gesamten Reproduktionsprozess zunichte macht’, erklärt Livneh. ’Das ´schludrige` Duplikationsenzym R1 könnte sich mit seiner Toleranz für beschädigtes genetisches Material in dieser Hinsicht als äußerst hilfreich erweisen.

Prof. Zvi Livneh ist Inhaber des Maxwell Ellis-Lehrstuhls für Biomedizinische Forschung. Seine Forschung wird unterstützt vom Dolfi-und-Lola-Ebner-Zentrum für Biomedizinische Forschung und der Minerva-Stiftung.

Debbie Weiss | idw

Weitere Berichte zu: Bakterien DNS Enzym Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Pilz schlägt sich mit eigenen Waffen
16.10.2018 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

nachricht Fische scheuen kein Blitzlichtgewitter
16.10.2018 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Im Focus: Chemiker der Universitäten Rostock und Yale zeigen erstmals Dreierkette aus gleichgeladenen Ionen

Die Forschungskooperation zwischen der Universität Yale und der Universität Rostock hat neue wissenschaftliche Ergebnisse hervorgebracht. In der renommierten Zeitschrift „Angewandte Chemie“ berichten die Wissenschaftler über eine Dreierkette aus Ionen gleicher Ladung, die durch sogenannte Wasserstoffbrücken zusammengehalten werden. Damit zeigen die Forscher zum ersten Mal eine Dreierkette aus gleichgeladenen Ionen, die sich im Grunde abstoßen.

Die erfolgreiche Zusammenarbeit zwischen den Professoren Mark Johnson, einem weltbekannten Cluster-Forscher, und Ralf Ludwig aus der Physikalischen Chemie der...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Materiezustände durch Licht verändern

Forscherinnen und Forscher der Universität Hamburg stören die kristalline Ordnung

Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2018

16.10.2018 | Veranstaltungen

Künstliche Intelligenz in der Medizin

16.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Multiresistente Keime aus Abwasser filtern

16.10.2018 | Ökologie Umwelt- Naturschutz

Pilz schlägt sich mit eigenen Waffen

16.10.2018 | Biowissenschaften Chemie

11. Jenaer Lasertagung

16.10.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics