Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekularer Nahkampf - Wie Antibiotika die Proteinfabrik in Bakterienzellen blockieren

25.10.2001


Max-Planck-Wissenschaftler entschlüsseln Wechselwirkung zwischen Antibiotika und bakteriellen Ribosomen und weisen neue Wege für die Antibiotika-Entwicklung


Dass bestimmte Antibiotika die Protein-Biosynthese in bakteriellen Ribosomen blockieren, war schon seit längerem bekannt - nicht aber der genaue Mechanismus. Wissenschaftlern der Arbeitsgruppe für Ribosomenstruktur der Max-Planck-Gesellschaft in Hamburg (Leitung: Prof. A.Yonath) und der Ribosomen-Arbeitsgruppe am Max-Planck-Institut für molekulare Genetik in Berlin (Leitung: Dr. F. Franceschi) ist es gelungen, die Antibiotika-Wirkung bis in ihre atomaren Details aufzuklären (nature, 25 Oktober 2001). Sie konnten die Struktur der 50S Ribosomen-Untereinheit des Bakteriums Deinococcus radiodurans in Wechselwirkung mit jeweils fünf verschiedenen, klinisch relevanten Antibiotika bestimmen - den Antibiotika Erythromycin, Roxithromycin und Clarithromycin sowie Chloramphenicol und Clindamycin. Damit ergeben sich neue Ansatzpunkte, um die Ausprägung von Resistenzen gegen Antibiotika zu erschweren und umgekehrt die bisher sehr langwierige und teure Entwicklung neuer Antibiotika zu vereinfachen.

Ribosomen sind komplexe Makromoleküle, die aus etwa 60 verschiedenen Proteinen und drei bis vier Nukleinsäureketten (ribosomale RNA) aufgebaut sind. Sie sind in jeder Zelle für die Herstellung der lebenswichtigen Proteine verantwortlich, indem sie den genetischen Code, also die Bauanleitung für die Proteine, übersetzen. Ribosomen bestehen aus zwei unabhängigen, unterschiedlich großen Untereinheiten, die verschiedene Funktionen bei der Protein-Biosynthese erfüllen. Die kleine Untereinheit (30S im Falle bakterieller Ribosomen) ist wesentlich für die Dekodierung des genetischen Codes zuständig, während die große Untereinheit (50S) in der so genannten Peptidyltransferase-Reaktion die einzelnen Aminosäuren zu einer langen Aminosäurenkette zusammenfügt, die schließlich zu einem globulären Proteinmolekül verknäuelt wird. Während ihrer Produktion befindet sich die Aminosäurenkette teilweise innerhalb der 50S Untereinheit, in einem etwa 100 Angstrom langen und 15 Angstrom breiten Tunnel, der sie vor enzymatischen Angriffen schützt. Erst 1999 gelang es - nach mehr als zwanzig Jahren intensiver Forschung - die komplizierte Struktur des Ribosoms mit atomarer Auflösung aufzuklären (vgl. PRI B 21/99 (72) "Gefrorene Bilder" erlauben tiefen Blick in Eiweißfabrik der Zelle, vom 7. Dezember 1999).


Erythromycin (türkis) blockiert den Tunnel der 50S ribosomalen Untereinheit. Die beiden RNA-Stränge der 50S Untereinheit sind rot (23S RNA) bzw. gelb (5S) dargestellt, die ribosomalen Proteine blau.

Grafik: Arbeitsgruppe Ribosomenstruktur der Max-Planck-Gesellschaft am DESY



Die zentrale Rolle des Ribosoms bei der Protein-Biosynthese macht es zugleich zu einem bevorzugten Angriffspunkt vieler Antibiotika (bakterienhemmende oder -tötende Wirkstoffe) und Cytostatika (tumorhemmende Wirkstoffe). Die Details des Wirkmechanismus waren jedoch bisher unbekannt. Chloramphenicol, Clindamycin und Erythromycin sind einige der Antibiotika, die gegen das zu trauriger Popularität gelangte Bacillus anthracis (Anthrax) eingesetzt werden können. Darüber hinaus werden die so genannten Makrolide-Antibiotika zur Bekämpfung einer Vielzahl bakterieller Infektionen verwendet, von Akne bis Syphilis. Anhand biochemischer Daten war bereits bekannt, dass Erythromycin die Peptidyltransferase-Reaktion erst nach der Bildung einer kurzen Aminosäurekette unterbindet. Die Struktur der 50S Untereinheit im Komplex mit Erythromycin sowie mit den zwei anderen Makroliden (Roxithromycin und Clarithromycin) zeigt, dass diese Klasse der Antibiotika den Tunnel der 50S Untereinheit blockiert, durch den alle Proteine hindurch gefädelt werden. Dies führt zu einem vorzeitigen Abbruch der Protein-Synthese.

Antibiotika sind ebenso kleine wie wirkungsvolle Moleküle. Die Abbildung zeigt die 3-dimensionale Struktur (links) sowie die chemische Struktur für a) Erythromycin, b) Clindamycin, c) Chloramphenicol

Grafik: Arbeitsgruppe Ribosomenstruktur der Max-Planck-Gesellschaft am DESY



Chloramphenicol ist sehr wirkungsvoll in der Behandlung eines breiten Spektrums bakterieller Infektionen, einschließlich schwerer anaerober Infektionen. Clindamycin wird unter anderem zur Bekämpfung anaerober Infektionen und Cocci-Bakterien sowie zur Behandlung von Pneumocystis induzierter Lungenentzündung von AIDS-Patienten verwendet. Beide Antibiotika binden direkt im Peptidyltransferase-Zentrum des Ribosoms. Die Strukturen der ribosomalen Untereinheit mit Clindamycin und Chloramphenicol bestätigen die Vermutung, dass diese Antibiotika die Protein-Biosynthese durch "molekulare Mimikry" unterbrechen: Sie besetzen nämlich Bereiche, die denen von zelleigenen Aminosäuren ähnlich sind, und werden deshalb durch das Ribosom gebunden. Da sie aber naturgemäß keine Peptidbindung eingehen können, bringen sie die Peptidyltransferase-Reaktion zum Stillstand - und das Bakterium wird somit getötet.

Der größte Teil der Antibiotika wird heute nicht zur Behandlung bakterieller Infektionen eingesetzt, sondern zur Produktion und Konservierung von Nahrungsmitteln. Als unmittelbare Folge sind viele (bakterielle) Erreger in zunehmenden Masse multi-resistent gegen eine große Zahl verschiedener Antibiotika. Schon in den fünfziger Jahren begünstigte diese Resistenz den Ausbruch der bakteriellen Ruhr in Japan, ausgelöst durch multi-resistente Stämme von Shigella dysenteriae, eine Infektion, die noch immer jährlich etwa 600.000 Tote weltweit fordert. Das Problem der Antibiotika-Resistenz ist inzwischen so signifikant, dass die Weltgesundheitsorganisation (WHO) von einer weltweiten Gesundheitskrise spricht.

Üblicherweise vergehen nicht mehr als ein bis zwei Jahre nach der Einführung eines neuen Antibiotikums bis die ersten resistenten Erreger auftreten. Die Entwicklung neuer Antibiotika kann daher mit der zunehmenden Verbreitung resistenter Bakterienstämme kaum Schritt halten: In den letzten 30 Jahren ist nur eine neue Wirkstoffklasse auf den Markt gekommen.

Die Aufklärung der Struktur der großen ribosomalen Untereinheit in Verbindung mit verschiedenen Antibiotika, und damit die Kenntnis der Wechselwirkung zwischen Antibiotika und Ribosomen, erlauben es nunmehr, die langwierige und kostenintensive Entwicklung neuer Medikamente deutlich zu beschleunigen bzw. zu vereinfachen.

PDF-Versionen:

72dpi, 599kB
300dpi, 1,59MB

Weitere Informationen erhalten Sie von:

Dr. Frank Schlünzen
Arbeitsgruppe Ribosomenstruktur der Max-Planck-Gesellschaft am DESY
Tel.: 0 40 / 89 98 - 28 09
Fax: 0 40 / 89 98 - 68 10
E-Mail: frank@mpgars.desy.de

Dr. Francois Franceschi
MPI fuer Molekulare Genetik, Arbeitsgruppe Ribosomen
Tel.: 0 30 / 84 13 - 16 91
Fax: 0 30 / 84 13 - 16 90
E-Mail: franceschi@molgen.mpg.de

| Max-Planck-Gesellschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Bedeutung des „Ozeanwetters“ für Ökosysteme
21.08.2018 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht In Form gebracht
21.08.2018 | Gesellschaft Deutscher Chemiker e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Mischung macht‘s: Jülicher Forscher entwickeln schnellladefähige Festkörperbatterie

Mit Festkörperbatterien sind aktuell große Hoffnungen verbunden. Sie enthalten keine flüssigen Teile, die auslaufen oder in Brand geraten könnten. Aus diesem Grund sind sie unempfindlich gegenüber Hitze und gelten als noch deutlich sicherer, zuverlässiger und langlebiger als herkömmliche Lithium-Ionen-Batterien. Jülicher Wissenschaftler haben nun ein neues Konzept vorgestellt, das zehnmal größere Ströme beim Laden und Entladen erlaubt als in der Fachliteratur bislang beschrieben. Die Verbesserung erzielten sie durch eine „clevere“ Materialwahl. Alle Komponenten wurden aus Phosphatverbindungen gefertigt, die chemisch und mechanisch sehr gut zusammenpassen.

Die geringe Stromstärke gilt als einer der Knackpunkte bei der Entwicklung von Festkörperbatterien. Sie führt dazu, dass die Batterien relativ viel Zeit zum...

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dialog an Deck, Science Slam und Pong-Battle

21.08.2018 | Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Zukünftige Informationstechnologien: Wärmetransport auf der Nanoskala unter die Lupe genommen

21.08.2018 | Physik Astronomie

Bedeutung des „Ozeanwetters“ für Ökosysteme

21.08.2018 | Biowissenschaften Chemie

Auf dem Weg zur personalisierten Medizin

21.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics