Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Systembiologie von Mikroorganismen - BMBF-Projekt mit FOMAAS-Beteiligung gestartet

21.02.2006


Die Systembiologie des biotechnologisch genutzten Mikroorganismus Corynebacterium glutamicum steht im Mittelpunkt eines soeben vom Bundesministerium für Bildung und Forschung BMBF gestarteten Verbundprojekts an dem das Siegener Forschungszentrum für Multidisziplinäre Analysen und Angewandte Systemoptimierung FOMAAS mit mehreren Doktoranden beteiligt sein wird. Die hierfür benötigten experimentellen Daten werden von den Partnern in Jülich, Köln, Halle, Bielefeld, Ulm und Erlangen bereitgestellt. Das Gesamtprojekt hat einen Umfang von über 5 Millionen Euro, an dem sich die Degussa AG federführend beteiligt.


Die noch junge Disziplin der Systembiologie hat sich zum Ziel gesetzt, lebende Organismen als komplexe Systeme miteinander wechselwirkender Komponenten zu verstehen. Diese Zielsetzung wird erst durch die Verfügbarkeit von so genannter Hochdurchsatz-Messtechniken sinnvoll, mit denen in kurzer Zeit eine große Zahl von aussagekräftigen Daten über den lebenden Organismus generiert werden kann. Dazu gehören z.B. die allgemein bekannten DNA-Chips, aber auch viele andere neue Messmethoden zur Quantifizierung einzelner Proteine oder Metabolite in der Zelle. Getrieben durch diese technische Entwicklung hat sich die Systembiologie schon in wenigen Jahren zu einem florierenden Forschungszweig entwickelt. So fand die fünfte "International Conference on Systems Biology" im Oktober 2005 in der Havard Medical School (Boston) statt. Das FOMAAS war gleich mit mehreren Beiträgen beteiligt.

Grundlagenforschung und Anwendung liegen selten so nah beisammen, wie im Bereich der Systembiologie. Mit der Beantwortung systembiologischer Fragestellungen sind oftmals zugleich auch wichtige biotechnologische oder medizinische Erkenntnisse verbunden. So werden seit vielen Jahren Feinchemikalien in biotechnologischen Produktionsprozessen mit Hilfe von Mikroorganismen produziert. Diese speziellen Organismen haben mit ihren frei lebenden Verwandten nicht mehr viel gemeinsam, denn sie wurden im Laufe der Jahrzehnte im Labor ’dereguliert’. Produktionsstämme scheiden in großen Mengen Stoffe aus, die sie eigentlich selbst für den Zellaufbau benötigen. Das Potential von klassischen ’Trial and Error Methoden’ der Stammverbesserung ist dabei heute so weit ausgereizt, dass nur noch ein systematisches Verständnis der Stoffwechselregulation in Verbindung mit gezielten gentechnischen Eingriffen zu Fortschritten führen kann. Dies ist insbesondere deshalb von hoher wirtschaftlicher Relevanz, weil der Feinchemikalienmarkt weltweit stark unter Druck steht und bereits kleine Produktivitätsgewinne zu großen Gewinnsteigerungen führen. Dies erklärt auch das große Interesse der Industrie an derartigen Fragestellungen.


Wie kommt es dazu, dass eine Ingenieur-Arbeitsgruppe aus Siegen eine derart zentrale Rolle in einem biologischen Verbundprojekt zukommt? Dies liegt ohne Zweifel an der universellen Anwendbarkeit des Systemdenkens auf alle Bereiche der Naturwissenschaft, Technik und Gesellschaft. Systemwissenschaftliche Ansätze sind Ingenieuren bestens vertraut und die omplexität technischer Systeme wird erst durch die ihre konsequente Anwendung möglich. So setzt sich beispielsweise eine startklare Boing 777 aus 150.000 verschiedenen Subsystemen zusammen, die durch hoch entwickelte Protokolle in komplexe Steuersysteme und Netzwerke organisiert sind. Diese werden durch ungefähr 1.000 Computer gesteuert, die alle Flugzeugfunktionen automatisiert ansteuern können. Niemand würde auf die Idee kommen, ein solches Flugzeug in seine elementaren Bestandteile zu zerlegen, um auf dieser Grundlage auf das Flugverhalten der Maschine zu schließen. Erst die Anwendung von Systemkonzepten macht derart komplexe Systeme handhabbar, verstehbar und in ihrem Verhalten vorhersagbar. Dies ist der Grund, warum Ingeniere für die Systembiologie wertvolle Beiträge liefern können.

Modellbildung, Analyse und Simulation komplexer Systeme sind seit vielen Jahren die Domäne des FOMAAS. Insbesondere die Mitarbeiter des Lehrstuhls für Simulationstechnik unter Leitung von Prof. Dr.-Ing. Wolfgang Wiechert sind seit nunmehr 15 Jahren auf dem biologischen Feld tätig. Die Siegener Arbeitsgruppe ist für das BMBF-Projekt bestens vorbereitet, da sie bereits über mehrere für diesen Zweck entwickelte Softwaresysteme verfügt. So wurden zusammen mit den Jülicher Partnern, die heute weltweit verwendete Methoden der metabolischen Stoffflussanalyse und der Stimulus-Response-Experimente mit schneller Probenahme maßgeblich mit voran getrieben. Die erste Methode erlaubt es, direkt in den Stoffwechsel einer lebenden Zelle zu blicken und die Stoffflüsse der einzelnen Reaktionsschritte im Zentralstoffwechsel zu quantifizieren. Mit der zweiten Methode können heute noch unbekannte Wechselwirkungen im Stoffwechsel einer Zelle aufgedeckt werden.

Kontakt und weitere Informationen:
Prof. Dr.-Ing. Wolfgang Wiechert
Universität Siegen, FBe 11/12 Maschinenbau und Elektrotechnik/Informatik
Lehrstuhl für Simulationstechnik und Informatik im Maschinenbau
Am Eichenhang 50, 57076 Siegen
Tel.: 0271-740-4727, -3394
Fax: 0271-740-3396
E-Mail: wiechert@simtec.mb.uni-siegen.de

Kordula Lindner-Jarchow M.A. | idw
Weitere Informationen:
http://www.uni-siegen.de

Weitere Berichte zu: BMBF-Projekt FOMAAS Mikroorganismus Organismus Systembiologie Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Was Vogelgrippe in menschlichen Zellen behindert
10.12.2019 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht Pflanzliche Reaktion bei Hitze: Der Kopf steckt im Boden
10.12.2019 | Technische Universität Braunschweig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Im Focus: Geminiden - Die Wünsch-dir-was-Sternschnuppen vor Weihnachten

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Die Geminiden, die Mitte Dezember zu sehen sind, sind der "zuverlässigste" der großen Sternschnuppen-Ströme mit bis zu 120 Sternschnuppen pro Stunde. Leider stört in diesem Jahr der Mond zur besten Beobachtungszeit.

Sie wurden nach dem Sternbild Zwillinge benannt: Die „Geminiden“ sorgen Mitte Dezember immer für ein schönes Sternschnuppenschauspiel. In diesem Jahr sind die...

Im Focus: Electronic map reveals 'rules of the road' in superconductor

Band structure map exposes iron selenide's enigmatic electronic signature

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals...

Im Focus: Das 136 Millionen Atom-Modell: Wissenschaftler simulieren Photosynthese

Die Umwandlung von Sonnenlicht in chemische Energie ist für das Leben unerlässlich. In einer der größten Simulationen eines Biosystems weltweit haben Wissenschaftlerinnen und Wissenschaftler diesen komplexen Prozess an einem Bestandteil eines Bakteriums nachgeahmt – am Computer, Atom um Atom. Die Arbeit, die jetzt in der renommierten Fachzeitschrift „Cell“ veröffentlicht wurde, ist ein wichtiger Schritt zum besseren Verständnis der Photosynthese in einigen biologischen Strukturen. An der internationalen Forschungskooperation unter Leitung der University of Illinois war auch ein Team der Jacobs University Bremen beteiligt.

Das Projekt geht zurück auf eine Initiative des inzwischen verstorbenen, deutsch-US-amerikanischen Physikprofessors Klaus Schulten von der University of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

Intelligente Transportbehälter als Basis für neue Services der Intralogistik

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was Vogelgrippe in menschlichen Zellen behindert

10.12.2019 | Biowissenschaften Chemie

Schäden im Leichtbau erkennen durch Ultraschallsensoren

10.12.2019 | Materialwissenschaften

Forscher untersuchen Rolle der Zellmembran bei der Entstehung chronischer Krankheiten

10.12.2019 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics