Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wenn sich Zellen breit machen

16.02.2006


Wie haften Zellen an Oberflächen fest und wie bewegen sie sich? - Der Physiker Dr. Ulrich Schwarz vom Zentrum für Modellierung und Simulation in den Biowissenschaften (BIOMS) forscht an der Ruprecht-Karls-Universität Heidelberg im Grenzbereich von Physik und Biologie



"In biologischen Systemen finden viele Prozesse statt, die etwas mit Mechanik zu tun haben", betont Dr. Ulrich Schwarz vom Interdisziplinären Zentrum für Wissenschaftliches Rechnen der Universität Heidelberg. Als Nachwuchsgruppenleiter des Zentrums für Modellierung und Simulation in den Biowissenschaften (BIOMS) erforscht er vor allem, wie Zellen sich an Oberflächen festheften.



Deshalb umfasst seine Forschung mehrere Wissenschaftsgebiete. Die theoretische Physik stellt die Methoden bereit, um die Zelladhäsion quantitativ zu beschreiben. Die Physik der weichen Materie erklärt, wie die dabei wirkenden Kräfte aus den speziellen Eigenschaften biologischer Materie folgen. Und die Biologie von Zelladhäsion und Zellmechanik ist notwendig, um überhaupt zu verstehen, wie es Zellen gelingt, an Oberflächen anzuhaften oder wie sie auf einwirkende Kräfte wie Zug oder Druck reagieren.

"Unterschiedliche Kräfte wirken auf Körperzellen eigentlich ständig ein", erklärt Ulrich Schwarz. Denkt man an die Zellen im Blut oder in der Lunge, wird dies auch sofort deutlich. Und wer einmal für längere Zeit einen Gipsverband trug, weiß auch, wie schnell die Muskulatur unter dem Gips nachlässt. "Da fehlt der mechanische Input", erläutert der Physiker Schwarz.

In den letzten Jahren wurde in verschiedenen experimentellen Studien gezeigt, dass es für Zellen ein gewaltiger Unterschied ist, ob sie auf einer harten oder einen weichen Oberfläche anhaften. Harte Oberflächen sind eigentlich untypisch, denn in einem Organismus herrschen weiche Oberflächen innerhalb des Gewebes vor. Haben Zellen die Auswahl, bevorzugen sie aber die harten Oberflächen. Zu diesen stellen sie relativ schnell einen Kontakt her, der zudem noch stärker ist als auf weichen Substraten. Auch die Form der Zellen ist anders. Während auf einem weichen Untergrund die Zelle in der Aufsicht eher rundlich erscheint, ist sie auf einer harten Oberfläche eher eckig und nimmt eine größere Fläche ein.

Sollten sich derartige Erkenntnisse in Zukunft durchsetzen, könnte sich auch die Art und Weise, wie Zellen unter dem Mikroskop studiert werden, grundsätzlich ändern, da dazu im Moment meistens noch harte Glas- oder Plastikunterlagen verwendet werden. Auch für biomedizinische Anwendungen wie Implantate im menschlichen Körper könnten diese Beobachtungen zukünftig eine große Rolle spielen. Denn vielleicht wäre es in manchen Fällen günstiger, weichere Implantate zu nehmen als bisher.

Ulrich Schwarz haben es aber auch die weißen Blutkörperchen und deren Fortbewegung angetan. Bereits während seiner Tätigkeit als Nachwuchsgruppenleiter am Max-Planck-Institut für Kolloid- und Grenzflächenforschung in Potsdam konnte er erstaunliches über diesen für das Immunsystem so wichtigen Zelltyp herausfinden. Die weißen Blutkörperchen schwimmen zunächst einmal im Blutstrom mit. Treffen sie in der Nähe eines Infektionsherdes auf die Gefäßwand, dann gehen sie mit dieser schwache Bindungen ein. Diese schwachen Bindungen in Kombination mit dem Blutfluss ermöglichen es ihnen, entlang der Wand weiter zu rollen. Am Infektionsherd selbst bleiben sie dann stehen und kriechen aus der Blutbahn zum Ort der Entzündung. In Zusammenarbeit mit Immunologen konnte Ulrich Schwarz zeigen, dass die ersten Schritte der rollenden Adhäsion durch die Bildung von Mehrfachbindungen charakterisiert sind. Jetzt soll in einem Nachfolgeprojekt festgestellt werden, wie die rollende Adhäsion später zum Stillstand gebracht wird.

Besonders die verschiedenen Möglichkeiten, die sich für seine Forschungen in Heidelberg bieten, haben Ulrich Schwarz vor einem Jahr zu dem Wechsel von Potsdam an die Ruperto Carola bewogen. Die BIOMS-Initiative bot hier ausgezeichnete Möglichkeiten mit ihren Partnern Deutsches Krebsforschungszentrum, EML Research (Forschungsinstitut der Klaus Tschira Stiftung), European Molecular Biology Laboratory, Max-Planck-Institut für Medizinische Forschung und Universität Heidelberg (mit dem Interdisziplinären Zentrum für Wissenschaftliches Rechnen und dem Zentrum für Molekulare Biologie). Mit 2,5 Millionen Euro für fünf Jahre finanziert die Klaus Tschira Stiftung ein Drittel vom BIOMS, ein weiteres Drittel steuert das Land Baden-Württemberg bei. Die restlichen Mittel erbringen die Universität und beteiligte Forschungsinstitute. Ulrich Schwarz leitet eine der drei Nachwuchsgruppen (junior research groups), die durch BIOMS neu eingerichtet wurden.

"In Heidelberg gibt es viele Wissenschaftler mit interessanten Themen, die aber die mechanischen Aspekte bei ihre Forschung noch nicht berücksichtigt haben", findet der Physiker. So arbeitet er beispielsweise mit Dr. Friedrich Frischknecht vom Universitätsklinikum Heidelberg zusammen. Frischknecht ist im Bereich der Malaria-Forschung tätig und konnte den Infektionsweg des eindringenden Parasiten per Videomikroskopie verfolgen. Dabei zeigte sich, dass nach dem Stich einer Mücke der Malaria-Erreger zunächst sehr mobil ist und rasch aus den Hautschichten in Blutgefäße oder Lymphbahnen eindringt. Ließe sich die Mobilität des Erregers einschränken, könnte dies eine Möglichkeit darstellen, eine Malaria-Erkrankung zu verhindern. Auch bei einem derartigen Problem kann die biologische Physik wichtige Erkenntnisse liefern, findet Ulrich Schwarz. Denn natürlich muss der Erreger bei seiner Fortbewegung Kontakte zum umgebenden Gewebe herstellen, und es werden selbstverständlich auch Kräfte ausgeübt.

Darüber hinaus fasziniert Ulrich Schwarz auch das Konzept des Bioquant-Gebäudes, in dem zukünftig Wissenschaftler verschiedenster Forschungsrichtungen an biologischen Themen arbeiten werden. Ulrich Schwarz wird als einer der ersten dort im Sommer 2006 einziehen, denn sein derzeitiger Arbeitsplatz ist eher provisorisch, obwohl er kaum mehr als Papier und Bleistift sowie einen Computer benötigt, um die Bewegungen der Zellen sowie die auf sie einwirkenden Kräfte zu berechnen und mit spezieller Software zu simulieren. Allerdings ist die Zusammenarbeit mit experimentellen Forschern ein ganz wesentlicher Bestandteil seiner Arbeit, und genau das erhofft er sich von der zukünftigen Arbeit im Bioquant-Gebäude.
Stefan Zeeh

Rückfragen bitte an:
Dr. Ulrich Schwarz
Universität Heidelberg
Im Neuenheimer Feld 293, 69120 Heidelberg
Tel. 06221 544986, Fax 548652
Ulrich.Schwarz@iwr.uni-heidelberg.de

Dr. Michael Schwarz
Pressesprecher der Universität Heidelberg
Tel. 06221 542310, Fax 542317
michael.schwarz@rektorat.uni-heidelberg.de

Dr. Michael Schwarz | idw
Weitere Informationen:
http://www.uni-heidelberg.de

Weitere Berichte zu: BIOMS Bioquant-Gebäude Materie Max-Planck-Institut Physik

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Signale aus der Pflanzenzelle
14.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Wie Antibiotikaresistenzen dank egoistischer genetischer Elemente überdauern
13.06.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics