Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moleküle per Handschlag begrüßen

09.02.2006


Nervenzellen können bis zu 200 Mal in einer Sekunde feuern - wie diese Ausdauerleistung im Einzelnen zustande kommt, erforscht ein Team am Institut für Chemie und Biochemie der Freien Universität Berlin


Nervenzellen unter dem Fluoreszenzmikroskop. Über vielzählige Kontaktstellen (Synapsen; in grün) senden sie Botschaften zu ihren Nachbarzellen. (c) V. Haucke / Freie Universität Berlin



Es klingt noch immer wie ein wenig wie Science Fiction: Ein Forscher möchte wissen, was im Inneren des Menschen vor sich geht, und dafür blickt er einfach mit einem wundersamen Gerät in dessen Körper. Er durchleuchtet die Zellen, zoomt einzelne Moleküle heran und beobachtet ihre Bewegungen. Tatsächlich ist der Forscheralltag der Utopie schon verblüffend nahe gekommen. Wenn Volker Haucke in einem Kellerraum des Instituts für Chemie und Biochemie an der Freien Universität Berlin in sein Fluoreszenz-Mikroskop blickt, dann kann er das molekulare Geschehen in lebenden Zellen beobachten: "Wir können die Moleküle quasi mit Handschlag begrüßen", so beschreibt der Zellbiologe seine Forschung. Der Trick besteht darin, bestimmte Moleküle gezielt mit einem fluoreszierenden Farbstoff zu markieren, der sie in ihrer normalen Funktion aber keineswegs behindert. Bestrahlt man dann Zellen, die in einer Nährlösung schwimmen, mit Licht einer bestimmten Wellenlänge, dann leuchten die Moleküle auf und senden Licht von einer anderen Farbe zurück.



Die Mikroskope sind inzwischen so empfindlich, dass die besten unter ihnen auf diese Weise sogar einzelne Moleküle erspähen können. Selbst Filmaufnahmen sind mit der Technik möglich. Die Geräte ermöglichen den Blick auf ein Gewimmel von Tausenden verschiedener Eiweißstoffe - jeder einzelne hat seine lebenswichtige Aufgabe in der komplizierten chemischen Choreographie der Zellen, die ganze Organismen und letztlich denkende, fühlende Wesen entstehen lässt. Haucke hat mit seinem jungen Team auf diese Weise gerade einen neuen Akteur entdeckt: Das Molekül "Stonin 2" trägt dazu bei, dass Nervenzellen dauerhaft Reize weiterleiten können, ohne bei längerer Beanspruchung zu ermüden. Ein ähnliches Molekül kennt man bereits bei Fruchtfliegen - wenn bei ihnen das Eiweißmolekül "Stoned" durch eine Mutation defekt ist, dann erstarren die Fliegen unter bestimmten Bedingungen wie versteinert.

Stonin 2 findet man beim Menschen vor allem im Gehirn und dort gehäuft im Hippocampus, einer Hirnregion, die für Lernen und Gedächtnis zuständig ist. Was das Molekül dort aber genau bewirkt, war bislang unklar. Jetzt ist Volker Haucke in Zusammenarbeit mit Jürgen Klingauf vom Max-Planck-Institut für Biophysikalische Chemie in Göttingen der entscheidende Schnappschuss gelungen, und er hat damit Licht in einen bislang noch nicht genau verstandenen Vorgang bei der Entstehung von Nervenimpulsen gebracht.

Jede der hundert Billionen Nervenzellen des Gehirns bildet an bis zu 10.000 Stellen Kontakte zu anderen Zellen aus. An diesen Kontaktstellen, den Synapsen, berühren sich die Zellen beinahe, aber nicht ganz - zwischen ihnen bleibt ein winziger Spalt. Ein ankommendes elektrisches Signal muss hier in eine chemische Botschaft übersetzt werden. Die Nervenzelle schüttet Neurotransmitter aus, die von den Nachbarzellen erkannt werden. Die Botenstoffe befinden sich zunächst in winzige Bläschen verpackt im Inneren der Zelle. Bei einem Signal verschmelzen die Bläschen mit der Außenhaut der Zelle und stülpen gleichsam ihr Inneres nach außen. Diese Verschmelzung wird unter anderem durch ein Eiweißmolekül namens Synaptotagmin vermittelt, das in der hauchdünnen Membran sitzt, aus der die Bläschen gebildet sind. Das Problem dabei: Nervenzellen können im Abstand von fünf Millisekunden Signale senden, und jedes Mal läuft der gleiche Prozess aufs Neue ab. Schon bald wären alle mit Neurotransmittern gefüllten Bläschen erschöpft.

Die Lösung besteht in einem flotten Recycling-Prozess: Im gleichen Maße wie die Bläschen aus dem Inneren der Zelle mit der Zellmembran verschmelzen, so schnüren sie sich auch wieder ab, wandern zurück und werden neu befüllt. Praktisch dabei ist, dass auch das nötige Synaptotagmin dabei wieder eingesammelt wird, und an dieser Stelle kommt der von Haucke entdeckte Einsatz des Stonin 2. Im Inneren der Zelle bindet es gezielt an das in der Außenhaut gestrandete Synaptotagmin und beschleunigt damit den Recyclingprozess. "Der ganze Kreislauf dauert nicht länger als 60 Sekunden", so Haucke, "wir betrachten da ein Fließgleichgewicht, das schnell und dabei hochselektiv arbeitet." Als nächstes möchte Haucke herausfinden, welche Rolle Stonin 2 beim Denken spielt. Ohne Synaptotagmin können Säugetiere nicht überleben, und selbst kleine Defekte können beim Menschen schon zu motorischen Störungen oder Schizophrenie führen. Die Rolle von Stonin 2 scheint subtiler. "Vielleicht wäre ein menschliches Gehirn ohne Stonin 2 bei intensiven Reizen schneller überlastet, vielleicht gäbe es auch epileptische Anfälle", spekuliert Haucke. Das Rätsel der höheren Denkvorgänge ist ein noch lange nicht gelöstes Puzzle - mit Stonin 2 sind die Forscher auf ihrem langen Weg aber einen Schritt vorangekommen.

Literatur:
M. K. Diril, M. Wienisch, N. Jung, J. Klingauf, V. Haucke: "Stonin 2 is an AP-2-dependent endocytic sorting adaptor for synaptotagmin internalization", in Dev. Cell 10 (Feb 2006), S. 233-244

Weitere Informationen erteilt Ihnen gern:
Prof. Dr. Volker Haucke, Institut für Chemie der Freien Universität Berlin, Tel.: 030 / 838-56922, E-Mail: vhaucke@chemie.fu-berlin.de

Ilka Seer | idw
Weitere Informationen:
http://www.fu-berlin.de

Weitere Berichte zu: Bläschen Molekül Nervenzelle Synaptotagmin Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics