Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freiburger Wissenschaftler entdecken molekularen Schalter von Entzündungsreaktionen

07.02.2006


Veröffentlichung in Nature Medicine



Das Gebiet der Angiogeneseforschung gehört seit 1990 zu den am schnellsten wachsenden Disziplinen der biomedizinischen Grundlagenforschung. Das ungestörte Wachstum von Blutgefäßen ist Voraussetzung für die Embryonalentwicklung; im Erwachsenen wird es essentiell mit dem Wachstum von Tumoren assoziiert. In jüngster Zeit zeigt sich zunehmend, dass die gleichen Moleküle, die im Embryo und in Tumoren das Wachstum von Blutgefäßen steuern, im erwachsenen Organismus wichtige Funktionen bei der Aufrechterhaltung der normalen Gefäßfunktion wahrnehmen. Wissenschaftler der Klinik für Tumorbiologie in Freiburg haben jetzt in Zusammenarbeit mit mehreren Arbeitsgruppen in Deutschland und in den USA das Molekül Angiopoietin-2 als einen wichtigen, von den Zellen der Blutgefäßwand selbst gebildeten molekularen Schalter identifiziert, der die Reaktionsfähigkeit von Blutgefäßen auf äußere Reize, wie beispielsweise entzündliche Reaktionen, kontrolliert.



Angiopoietin-2 (Ang-2) gehört zur Familie der Angiopoietin Wachstumsfaktoren. Angiopoietin-1 (Ang-1) bindet an den Rezeptor Tie-2 auf der Oberfläche von Gefä߬wandzellen (Endothelzellen). Die Aktivierung von Tie-2 durch Ang-1 ist für die dauer¬hafte Stabilisierung von Blutgefäßen erforderlich. Angiopoietin-2 (Ang-2) ist der funktionelle Antagonist der Ang-1/Tie-2 Wechselwirkung. Die Bindung von Ang-2 an den Rezeptor Tie-2 führt zur Destabilisierung von Blutgefäßen, wodurch diese empfänglich für äußere Reize werden. Vor zwei Jahren hatten die Wissenschaftler der Klinik für Tumorbiologie um Dr. Ulrike Fiedler beobachtet, dass der Inhibitor der dauerhaften Ang-1/Tie-2-vermittelten Gefäßstabilisierung, Ang-2, von Endothelzellen selbst gebildet und in diesen gespeichert wird. Diese Speicherung von Ang-2 in Endothelzellen legte die Vermutung nahe, dass gespeichertes Ang-2 in der Lage ist, nach Freisetzung schnelle Anpassungsreaktionen des Blutgefäßsystems zu steuern.

Dieser Hypothese sind die Forscher in einer wissenschaftlichen Arbeit nachgegangen, die jetzt in dem biomedizinischen Fachjournal Nature Medicine publiziert wird: Sie konnten zeigen, dass Mäuse, denen das Ang-2 Gen fehlt, keine schnellen entzündlichen Reaktionen initiieren können. Dabei sind die Zellen der Gefäßwand nicht in der Lage, auf einen Entzündungsreiz das Repertoire an Adhäsionsmolekülen auf ihrer Oberfläche zu präsentieren, das zum Andocken von Entzündungszellen erforderlich ist. Die Bedeutung dieser Entdeckung liegt damit vor allem in der Erkenntnis, dass Ang-2 in der Hierarchie der Entzündungskaskade hoch angesiedelt ist und einen molekularen Schalter der Gefäßwand darstellt, mit dem die Zellen der Gefäßwand ihre Reaktionsfähigkeit auf äußere Reize steuern. Die Ergebnisse der Untersuchungen haben erhebliche Bedeutung für eine ganze Reihe von Erkrankungen, die mit entzündlichen Reaktionen der Gefäßwand einhergehen. Darüber hinausgehend vermuten die Wissenschaftler eine Beteiligung von Ang-2 bei anderen krankhaften Gefäßveränderungen wie Blutgerinnung, Arteriosklerose und der mit dem Wachstum von Tumoren einhergehenden Blutgefäßbildung. Ebenso wie die Erforschung von Angiopoietin-2 als möglichen therapeutischen Angriffspunkt für verschiedene Erkrankungen sind diese Arbeitshypothesen Gegenstand laufender weiterführender Untersuchungen.

Die Forschungsarbeiten finden im Rahmen des von der Deutschen Forschungsgemeinschaft geförderten SFB-TR23 "Vascular Differentiation and Remodeling" der Universitäten Franfurt, Heidelberg und Freiburg (transregio23.de) sowie des SFB "Angiogenese" des österreichischen Wissenschaftsfonds FWF (fwf.ac.at) statt.

Referenz:
Ulrike Fiedler, Yvonne Reiss, Marion Scharpfenecker, Verena Grunow, Stefanie Koidl, Gavin Thurston, Nicolas W. Gale, Martin Witzenrath, Simone Rosseau, Norbert Suttorp, Astrid Sobke, Mathias Herrmann, Klaus T. Preissner, Peter Vajkoczy P, Hellmut G. Augustin: Angiopoietin-2 sensitizes endothelial cells to TNF? and has a crucial role in the induction of inflammation. Nature Medicine, im Druck, 2006 (advanced online publication unter: http://www.nature.com/nm/journal/vaop/ncurrent/index.html)

Kontakt:
Prof. Dr. Hellmut Augustin
Abt. für Vaskuläre Biologie und Angiogeneseforschung
Klinik für Tumorbiologie
Breisacher Str. 117
79106 Freiburg
Tel: 0761 -206 1501
E-mail: sekretariat@angiogenese.de

Barbara Riess | idw
Weitere Informationen:
http://www.tumorbio.uni-freiburg.de
http://www.nature.com/nm/journal/vaop/ncurrent/index.html
http://www.angiolab.de

Weitere Berichte zu: Ang-2 Angiopoietin-2 Blutgefäße Gefäßwand Schalter

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

nachricht Einbahnstraße für das Salz
21.09.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics