Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Freiburger Wissenschaftler entdecken molekularen Schalter von Entzündungsreaktionen

07.02.2006


Veröffentlichung in Nature Medicine



Das Gebiet der Angiogeneseforschung gehört seit 1990 zu den am schnellsten wachsenden Disziplinen der biomedizinischen Grundlagenforschung. Das ungestörte Wachstum von Blutgefäßen ist Voraussetzung für die Embryonalentwicklung; im Erwachsenen wird es essentiell mit dem Wachstum von Tumoren assoziiert. In jüngster Zeit zeigt sich zunehmend, dass die gleichen Moleküle, die im Embryo und in Tumoren das Wachstum von Blutgefäßen steuern, im erwachsenen Organismus wichtige Funktionen bei der Aufrechterhaltung der normalen Gefäßfunktion wahrnehmen. Wissenschaftler der Klinik für Tumorbiologie in Freiburg haben jetzt in Zusammenarbeit mit mehreren Arbeitsgruppen in Deutschland und in den USA das Molekül Angiopoietin-2 als einen wichtigen, von den Zellen der Blutgefäßwand selbst gebildeten molekularen Schalter identifiziert, der die Reaktionsfähigkeit von Blutgefäßen auf äußere Reize, wie beispielsweise entzündliche Reaktionen, kontrolliert.



Angiopoietin-2 (Ang-2) gehört zur Familie der Angiopoietin Wachstumsfaktoren. Angiopoietin-1 (Ang-1) bindet an den Rezeptor Tie-2 auf der Oberfläche von Gefä߬wandzellen (Endothelzellen). Die Aktivierung von Tie-2 durch Ang-1 ist für die dauer¬hafte Stabilisierung von Blutgefäßen erforderlich. Angiopoietin-2 (Ang-2) ist der funktionelle Antagonist der Ang-1/Tie-2 Wechselwirkung. Die Bindung von Ang-2 an den Rezeptor Tie-2 führt zur Destabilisierung von Blutgefäßen, wodurch diese empfänglich für äußere Reize werden. Vor zwei Jahren hatten die Wissenschaftler der Klinik für Tumorbiologie um Dr. Ulrike Fiedler beobachtet, dass der Inhibitor der dauerhaften Ang-1/Tie-2-vermittelten Gefäßstabilisierung, Ang-2, von Endothelzellen selbst gebildet und in diesen gespeichert wird. Diese Speicherung von Ang-2 in Endothelzellen legte die Vermutung nahe, dass gespeichertes Ang-2 in der Lage ist, nach Freisetzung schnelle Anpassungsreaktionen des Blutgefäßsystems zu steuern.

Dieser Hypothese sind die Forscher in einer wissenschaftlichen Arbeit nachgegangen, die jetzt in dem biomedizinischen Fachjournal Nature Medicine publiziert wird: Sie konnten zeigen, dass Mäuse, denen das Ang-2 Gen fehlt, keine schnellen entzündlichen Reaktionen initiieren können. Dabei sind die Zellen der Gefäßwand nicht in der Lage, auf einen Entzündungsreiz das Repertoire an Adhäsionsmolekülen auf ihrer Oberfläche zu präsentieren, das zum Andocken von Entzündungszellen erforderlich ist. Die Bedeutung dieser Entdeckung liegt damit vor allem in der Erkenntnis, dass Ang-2 in der Hierarchie der Entzündungskaskade hoch angesiedelt ist und einen molekularen Schalter der Gefäßwand darstellt, mit dem die Zellen der Gefäßwand ihre Reaktionsfähigkeit auf äußere Reize steuern. Die Ergebnisse der Untersuchungen haben erhebliche Bedeutung für eine ganze Reihe von Erkrankungen, die mit entzündlichen Reaktionen der Gefäßwand einhergehen. Darüber hinausgehend vermuten die Wissenschaftler eine Beteiligung von Ang-2 bei anderen krankhaften Gefäßveränderungen wie Blutgerinnung, Arteriosklerose und der mit dem Wachstum von Tumoren einhergehenden Blutgefäßbildung. Ebenso wie die Erforschung von Angiopoietin-2 als möglichen therapeutischen Angriffspunkt für verschiedene Erkrankungen sind diese Arbeitshypothesen Gegenstand laufender weiterführender Untersuchungen.

Die Forschungsarbeiten finden im Rahmen des von der Deutschen Forschungsgemeinschaft geförderten SFB-TR23 "Vascular Differentiation and Remodeling" der Universitäten Franfurt, Heidelberg und Freiburg (transregio23.de) sowie des SFB "Angiogenese" des österreichischen Wissenschaftsfonds FWF (fwf.ac.at) statt.

Referenz:
Ulrike Fiedler, Yvonne Reiss, Marion Scharpfenecker, Verena Grunow, Stefanie Koidl, Gavin Thurston, Nicolas W. Gale, Martin Witzenrath, Simone Rosseau, Norbert Suttorp, Astrid Sobke, Mathias Herrmann, Klaus T. Preissner, Peter Vajkoczy P, Hellmut G. Augustin: Angiopoietin-2 sensitizes endothelial cells to TNF? and has a crucial role in the induction of inflammation. Nature Medicine, im Druck, 2006 (advanced online publication unter: http://www.nature.com/nm/journal/vaop/ncurrent/index.html)

Kontakt:
Prof. Dr. Hellmut Augustin
Abt. für Vaskuläre Biologie und Angiogeneseforschung
Klinik für Tumorbiologie
Breisacher Str. 117
79106 Freiburg
Tel: 0761 -206 1501
E-mail: sekretariat@angiogenese.de

Barbara Riess | idw
Weitere Informationen:
http://www.tumorbio.uni-freiburg.de
http://www.nature.com/nm/journal/vaop/ncurrent/index.html
http://www.angiolab.de

Weitere Berichte zu: Ang-2 Angiopoietin-2 Blutgefäße Gefäßwand Schalter

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HIF-1α bremst Natürliche Killerzellen aus
25.05.2020 | Universitätsmedizin Mannheim

nachricht Biochemie-Absolvent der Universität Bayreuth hat Antigen für hochspezifischen Corona-Antikörpertest entwickelt
22.05.2020 | Universität Bayreuth

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call – Wenn Mikroimplantate miteinander kommunizieren / Innovationstreiber Digitalisierung - »Smart Health«

Die Mikroelektronik als Schlüsseltechnologie ermöglicht zahlreiche Innovationen im Bereich der intelligenten Medizintechnik. Das vom Fraunhofer-Institut für Biomedizinische Technik IBMT koordinierte BMBF-Verbundprojekt »I-call« realisiert erstmals ein Elektroniksystem zur ultraschallbasierten, sicheren und störresistenten Datenübertragung zwischen Implantaten im menschlichen Körper.

Wenn mikroelektronische Systeme für medizintechnische Anwendungen eingesetzt werden, müssen sie hohe Anforderungen hinsichtlich Biokompatibilität,...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: Wenn aus theoretischer Chemie Praxis wird

Thomas Heine, Professor für Theoretische Chemie an der TU Dresden, hat 2019 zusammen mit seinem Team topologische 2D-Polymere vorhergesagt. Nur ein Jahr später konnten diese Materialien von einem italienischen Forscherteam synthetisiert und deren topologische Eigenschaften experimentell nachgewiesen werden. Für die renommierte Fachzeitschrift Nature Materials war das Anlass, Thomas Heine zu einem News and Views Artikel einzuladen, der in dieser Woche veröffentlicht wurde. Unter dem Titel "Making 2D Topological Polymers a reality" beschreibt Prof. Heine, wie aus seiner Theorie Praxis wurde.

Ultradünne Materialien sind als Bausteine für nanoelektronische Bauelemente der nächsten Generation äußerst interessant, da es viel einfacher ist, Schaltungen...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Mikroroboter rollt tief ins Innere des Körpers

Mit einem Leukozyten als Vorbild haben Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme in Stuttgart einen Mikroroboter entwickelt, der in Größe, Form und Bewegungsfähigkeit einem weißen Blutkörperchen gleicht. In einem Labor simulierten sie dann ein Blutgefäß – und es gelang ihnen, den Mikroroller durch diese dynamische und dichte Umgebung zu steuern. Der Roboter hielt dem simulierten Blutfluss stand und brachte damit das Forschungsgebiet rund um die zielgenaue Medikamentenabgabe einen Schritt weiter: Es gibt keinen besseren Zugangsweg zu allen Geweben und Organen im menschlichen Körper als den Blutkreislauf.

Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Stuttgart haben einen winzigen Mikroroboter entwickelt, der einem weißen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

Erfolgreiche Premiere für das »Electrochemical Cell Concepts Colloquium«

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Künstliche Intelligenz für einen optimierten Mobilfunk

25.05.2020 | Informationstechnologie

Struktur mit dem gewissen Extra

25.05.2020 | Materialwissenschaften

Batterieforschung: Lithium kommt in Sicht

25.05.2020 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics