Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Eine Streckbank für das DNA-Knäuel" - Erbmolekül ist lang gestreckt experimentell besser zugänglich

27.01.2006


Die DNA als Knäuel: Zwar ist das Erbmolekül bekanntermaßen als Doppelhelix oder eine Art gewendelte Strickleiter aufgebaut. Unter normalen Umständen ist diese Struktur aber noch sehr viel stärker aufgewickelt. In lebenden Zellen bietet das den Vorteil, dass die um ein Vielfaches längere DNA in den Zellkern passt. Bei Experimenten und anderen Anwendungen aber ergibt sich die Schwierigkeit, das so stark aufgedrehte DNA-Molekül zugänglich zu machen. Der Doktorandin Marion Hochrein am Lehrstuhl für Experimentalphysik von Professor Dr. Joachim Rädler an der Ludwig-Maximilians-Universität (LMU) München gelang nun, DNA mit vergleichsweise geringem Aufwand auszustrecken. Wie die beiden Forscher und weitere beteiligte Kollegen in der Online-Ausgabe von "Physical Review Letters" schreiben, verlieren die Nukleinsäuremoleküle ihre Knäuelstruktur, wenn sie auf bestimmte Membranen mit Oberflächen mit periodisch angeordneten, parallelen Gräben aufgebracht werden. "Die Ausrichtung der langen DNA ist für viele biotechnologische Anwendungen, etwa das optische Sequenzieren, eine Notwendigkeit", berichtet Hochrein. "Zum anderen ist die ausgestreckte DNA für die Polymerphysik interessant, die das Verhalten des DNA-Moleküls analysiert."



Vor allem wenn die Interaktion von DNA mit anderen Biomolekülen untersucht werden soll, muss das Molekül ausgestreckt werden, um überhaupt zugänglich zu sein. Hochrein und ihre Kollegen nutzten dafür Membranen aus Lipiden, also wasserunlöslichen Molekülen, zu denen unter anderem Fette und Fettsäuren gehören. Die Membranen dürfen keine glatte Oberfläche zeigen, sondern müssen langgestreckte regelmäßige "Furchen" und Erhebungen bilden. In eine "Ecke" dieser Vertiefungen nun legen sich die aufgewickelten DNA-Fäden, strecken sich aus und sind aufgrund der regelmäßigen Anordnung der Furchen, in denen sie sich befinden, dann auch gleichmäßig ausgerichtet. Diese Wirkung ist auf die Ladungen der DNA und der Membran zurückzuführen. Die DNA ist ein großes, negativ geladenes Biomolekül. Der konkav gekrümmte Bereich der Furchen, an den die DNA anliegt, erlaubt besonders viel Kontakt zwischen den negativ geladenen DNA-Molekülen und den positiv geladenen Lipiden. Das könnte auch erklären, warum sich die DNA-Moleküle in den am stärksten gekrümmten Bereichen der Vertiefungen und nicht etwa auf den benachbarten Erhebungen ausrichten.



Die bis dahin eingesetzten Methoden zur Ausrichtung von DNA waren sehr viel komplizierter in der Anwendung. "Unser Ansatz dagegen bietet ganz andere Möglichkeiten, die Form von DNA zu kontrollieren", so Hochrein. "Es können jetzt nämlich sehr einfach große DNA-Mengen auf die entsprechenden Membranen aufgebracht werden, wo sie sich dann ausrichten und ausstrecken. So sind sie frei zugänglich für das umgebende wässrige Medium und darin gelöste Moleküle. Das System erleichtert deshalb umfangreiche Experimente und auch die Analyse fundamentaler biologischer Prozesse, die mit DNA und anderen Biomolekülen zu tun haben." Die DNA kann noch zusätzlich manipuliert werden, indem elektrische Felder angelegt oder Proteine in die Membran eingebracht werden. Das neue System und die vielfältigen damit verbundenen Möglichkeiten werden, so vermuten die Forscher, für sehr viele Biophysiker von Interesse sein.

Publikation:

"DNA Localization and Coil Stretching on Periodically Micro-structured Lipid Membranes", Marion B. Hochrein, Judith A. Leierseder, Leonardo Golubovic, and Joachim O. Rädler, Phys. Rev. Lett., 2006, online, Publikation in Print folgt

Ansprechpartner:

Dr. Marion Hochrein
Lehrstuhl für Experimentalphysik, Physik weicher Materie und Biophysik von Prof. Dr. Joachim Rädler
Tel.: 089-2180-2704
Fax: 089-2180-3182
E-Mail: Marion.Hochrein@physik.uni-muenchen.de

www.uni-muenchen.de/ | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Biomolekül DNA DNA-Molekül Erbmolekül Lipid Membran Molekül

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Komplexe biologische Systeme können nicht ohne Chaos existieren
17.02.2020 | Universität Rostock

nachricht Neue Hauptdarsteller im Meeresboden: Eine bislang kaum beachtete Bakteriengruppe im Rampenlicht
17.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg

17.02.2020 | Geowissenschaften

Lichtpulse bewegen Spins von Atom zu Atom

17.02.2020 | Physik Astronomie

Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen

17.02.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics