Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Eine Streckbank für das DNA-Knäuel" - Erbmolekül ist lang gestreckt experimentell besser zugänglich

27.01.2006


Die DNA als Knäuel: Zwar ist das Erbmolekül bekanntermaßen als Doppelhelix oder eine Art gewendelte Strickleiter aufgebaut. Unter normalen Umständen ist diese Struktur aber noch sehr viel stärker aufgewickelt. In lebenden Zellen bietet das den Vorteil, dass die um ein Vielfaches längere DNA in den Zellkern passt. Bei Experimenten und anderen Anwendungen aber ergibt sich die Schwierigkeit, das so stark aufgedrehte DNA-Molekül zugänglich zu machen. Der Doktorandin Marion Hochrein am Lehrstuhl für Experimentalphysik von Professor Dr. Joachim Rädler an der Ludwig-Maximilians-Universität (LMU) München gelang nun, DNA mit vergleichsweise geringem Aufwand auszustrecken. Wie die beiden Forscher und weitere beteiligte Kollegen in der Online-Ausgabe von "Physical Review Letters" schreiben, verlieren die Nukleinsäuremoleküle ihre Knäuelstruktur, wenn sie auf bestimmte Membranen mit Oberflächen mit periodisch angeordneten, parallelen Gräben aufgebracht werden. "Die Ausrichtung der langen DNA ist für viele biotechnologische Anwendungen, etwa das optische Sequenzieren, eine Notwendigkeit", berichtet Hochrein. "Zum anderen ist die ausgestreckte DNA für die Polymerphysik interessant, die das Verhalten des DNA-Moleküls analysiert."



Vor allem wenn die Interaktion von DNA mit anderen Biomolekülen untersucht werden soll, muss das Molekül ausgestreckt werden, um überhaupt zugänglich zu sein. Hochrein und ihre Kollegen nutzten dafür Membranen aus Lipiden, also wasserunlöslichen Molekülen, zu denen unter anderem Fette und Fettsäuren gehören. Die Membranen dürfen keine glatte Oberfläche zeigen, sondern müssen langgestreckte regelmäßige "Furchen" und Erhebungen bilden. In eine "Ecke" dieser Vertiefungen nun legen sich die aufgewickelten DNA-Fäden, strecken sich aus und sind aufgrund der regelmäßigen Anordnung der Furchen, in denen sie sich befinden, dann auch gleichmäßig ausgerichtet. Diese Wirkung ist auf die Ladungen der DNA und der Membran zurückzuführen. Die DNA ist ein großes, negativ geladenes Biomolekül. Der konkav gekrümmte Bereich der Furchen, an den die DNA anliegt, erlaubt besonders viel Kontakt zwischen den negativ geladenen DNA-Molekülen und den positiv geladenen Lipiden. Das könnte auch erklären, warum sich die DNA-Moleküle in den am stärksten gekrümmten Bereichen der Vertiefungen und nicht etwa auf den benachbarten Erhebungen ausrichten.



Die bis dahin eingesetzten Methoden zur Ausrichtung von DNA waren sehr viel komplizierter in der Anwendung. "Unser Ansatz dagegen bietet ganz andere Möglichkeiten, die Form von DNA zu kontrollieren", so Hochrein. "Es können jetzt nämlich sehr einfach große DNA-Mengen auf die entsprechenden Membranen aufgebracht werden, wo sie sich dann ausrichten und ausstrecken. So sind sie frei zugänglich für das umgebende wässrige Medium und darin gelöste Moleküle. Das System erleichtert deshalb umfangreiche Experimente und auch die Analyse fundamentaler biologischer Prozesse, die mit DNA und anderen Biomolekülen zu tun haben." Die DNA kann noch zusätzlich manipuliert werden, indem elektrische Felder angelegt oder Proteine in die Membran eingebracht werden. Das neue System und die vielfältigen damit verbundenen Möglichkeiten werden, so vermuten die Forscher, für sehr viele Biophysiker von Interesse sein.

Publikation:

"DNA Localization and Coil Stretching on Periodically Micro-structured Lipid Membranes", Marion B. Hochrein, Judith A. Leierseder, Leonardo Golubovic, and Joachim O. Rädler, Phys. Rev. Lett., 2006, online, Publikation in Print folgt

Ansprechpartner:

Dr. Marion Hochrein
Lehrstuhl für Experimentalphysik, Physik weicher Materie und Biophysik von Prof. Dr. Joachim Rädler
Tel.: 089-2180-2704
Fax: 089-2180-3182
E-Mail: Marion.Hochrein@physik.uni-muenchen.de

www.uni-muenchen.de/ | idw
Weitere Informationen:
http://www.uni-muenchen.de/

Weitere Berichte zu: Biomolekül DNA DNA-Molekül Erbmolekül Lipid Membran Molekül

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Im Visier: die „kleinen Geschwister“ der Proteine
12.11.2018 | Technische Universität Berlin

nachricht Reparaturdefekt führt zu Chaos im Erbgut
12.11.2018 | Deutsches Krebsforschungszentrum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Graphen auf dem Weg zur Supraleitung

Doppelschichten aus Graphen haben eine Eigenschaft, die ihnen erlauben könnte, Strom völlig widerstandslos zu leiten. Dies zeigt nun eine Arbeit an BESSY II. Ein Team hat dafür die Bandstruktur dieser Proben mit extrem hoher Präzision ausgemessen und an einer überraschenden Stelle einen flachen Bereich entdeckt. Möglich wurde dies durch die extrem hohe Auflösung des ARPES-Instruments an BESSY II.

Aus reinem Kohlenstoff bestehen so unterschiedliche Materialien wie Diamant, Graphit oder Graphen. In Graphen bilden die Kohlenstoffatome ein zweidimensionales...

Im Focus: Datensicherheit: Aufbruch in die Quantentechnologie

Den Datenverkehr noch schneller und abhörsicher machen: Darauf zielt ein neues Verbundprojekt ab, an dem Physiker der Uni Würzburg beteiligt sind. Das Bundesforschungsministerium fördert das Projekt mit 14,8 Millionen Euro.

Je stärker die Digitalisierung voranschreitet, umso mehr gewinnen Datensicherheit und sichere Kommunikation an Bedeutung. Für diese Ziele ist die...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Forschungsschiff Polarstern startet Antarktissaison

Wie sieht es unter dem Schelfeis des abgebrochenen Riesen-Eisbergs A68 aus?

Am Samstag, den 10. November 2018 verlässt das Forschungsschiff Polarstern seinen Heimathafen Bremerhaven Richtung Kapstadt, Südafrika.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wer rechnet schneller? Algorithmen und ihre gesellschaftliche Überwachung

12.11.2018 | Veranstaltungen

Profilierte Ausblicke auf die Mobilität von morgen

12.11.2018 | Veranstaltungen

Mehrwegbecher-System für Darmstadt: Prototyp-Präsentation am Freitag, 16. November, 11 Uhr

09.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ein magnetisches Gedächtnis für den Computer

12.11.2018 | Energie und Elektrotechnik

Autonomes Parken wird erprobt

12.11.2018 | Informationstechnologie

Multicopter und Satelliten für den Rettungseinsatz

12.11.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics