Antihaft-Beschichtung lässt Insekten keine Chance

Gleitfalle der Kannenpflanze Nepenthes alata. Im Hintergrund: Rasterelektronenmikroskopische Aufnahme der oberen und unteren Wachsschicht. Die eingefügten Schemata erklären, auf welche Weise die beiden Wachsschichten die Haftkraft der Insekten reduzieren: Durch die obere Schicht werden die Insektenfüße verschmutzt und die untere Schicht vermindert die Kontaktbildung zwischen den adhäsiven Hafthaaren der Füße und dem Substrat. Bild: Max-Planck-Institut für Metallforschung

Stuttgarter Wissenschaftler zeigen, wie fleischfressende Pflanzen mit raffiniertem Materialdesign erfolgreich Fallen stellen

Pflanzen sind in der Lage, mit Hilfe organischer Substanzen ähnliche Effekte zu erzielen wie wir sie zumeist nur von technischen Materialien kennen. Das haben Wissenschaftler des Max-Planck-Instituts für Metallforschung und der Universität Hohenheim am Beispiel fleischfressender Kannenpflanzen gezeigt.

Diesen Pflanzen gelingt es mit einer doppelt mit Wachs beschichteten Falle, Insekten zu fangen und festzuhalten.

Während die Kristalle der oberen Wachsschicht die Haftorgane der Insekten verschmutzen, reduziert die untere Wachsschicht die Haftfläche, über die Insektenfüße mit der Pflanzenoberfläche in Berührung kommen: Die Insekten rutschen in die kannenförmige Falle und werden dort verdaut (The Journal of Experimental Biology, Dezember 2005). Aus diesen Erkenntnisse ergeben sich auch Hinweise für die Entwicklung von Antihaftfolien.

Karnivore, also fleischfressende Pflanzen sind eine hoch spezialisierte ökologische Gruppe von Pflanzen. Sie fangen und verdauen kleine Tiere, meist Insekten, um Nährstoffe, wie Stickstoff und Phosphor, zu gewinnen, die im Boden fehlen. Diese Pflanzen entwickelten spezielle Fangorgane, um Beute zu fangen. Morphologie und Fangmechanismen der Fallen variieren zwischen den verschiedenen Arten.

Die Gleitfallen der tropischen Kannenpflanze Nepenthes gehören zu den passiven Fallen. Sie bewegen sich nicht, um Tiere zu fangen. Obwohl die Ursprünge der Kannen wie auch anderer Fallen carnivorer Pflanzen in den Blattorganen liegen, sind es doch sehr Blatt-untypische Strukturen, die von den Blättern herabhängen. Nepenthes-Kannen besitzen eine komplexe Organisation mit Deckel, Peristom (Kannenrand) sowie einer Gleit- und einer Verdauungszone mit einem Vorrat an Verdauungsflüssigkeit. Mit diesen Kannen werden Insekten angelockt, festgehalten und schließlich verdaut.

Die Gleitzone hat eine Schlüsselrolle beim erfolgreichen Fallenstellen. Dieser Bereich ist von einer Schicht kristalliner Wachse bedeckt, auf der die Insekten den Halt verlieren und in die Verdauungsflüssigkeit hinab rutschen. Bei bisherigen Studien hat man sich entweder mit der Wachsstruktur oder dem Insektenverhalten in der Falle befasst.

Die Forscher haben deshalb die Mikromorphologie, chemische Zusammensetzung und mechanischen Eigenschaften der Wachse untersucht und mit Experimenten zum Insektenverhalten kombiniert. Danach besteht diese Wachsbedeckung aus zwei übereinanderliegenden Schichten, die sich in ihrer Struktur, chemischen Komposition, Härte und Elastizität unterscheiden. Diese Wachsschichten reduzieren die Haftkraft der Insekten auf zwei ganz unterschiedlichen Wegen.

Die obere Wachsschicht besteht aus einzelnen unregelmäßigen 30-50 Nanometer dicken Plättchen, die sich mehr oder weniger senkrecht zur anderen Schicht und zur Oberfläche der Kannenwand anordnen. Ihre Orientierung ist eher zufällig; die Plättchen bilden keine klaren Muster. Die Kristalle bestehen aus vielen kleinen, parallel zueinander ausgerichteten Schichten und besitzen einen kleinen „Stiel“, der sich in derselben Ebene wie das Kristallplättchen befindet.

Die untere Schicht ähnelt einem Schaumstoff. Sie besteht aus miteinander verbundenen Membranplättchen, die in spitzem Winkel aus der Oberfläche herausragen und keine klare Ausrichtung zeigen. Härte und Elastizität beider Schichten unterscheiden sich um mehr als eine Größenordnung: Die obere Wachsschicht ist viel weicher und geschmeidiger als die untere Schicht.

In Laborexperimenten mit der Käfern der Art Adalia bipunctata zeigte sich, dass die Wachsschichten – im Vergleich zu Glas bzw. der entwachsten Kannenwand als Referenzoberflächen – die Haftkraft der Insekten signifikant verringerten. Während durch die obere Schicht die Insektenfüße verschmutzt und damit weniger haftfähig werden, reduziert die untere Schicht die Fläche, über die die Füße mit der Falle Kontakt haben.

Originalveröffentlichung:

Gorb E., Haas K., Henrich A., Enders S., Barbakadze N. and Gorb S
Composite structure of the crystalline epicuticular wax layer of the slippery zone in the pitchers of the carnivorous plant Nepenthes alata and its effect on insect attachment.
The Journal of Experimental Biology, 2005, vol. 208, 4651-4662

Gorb E., Kastner V., Peressadko A., Arzt E., Gaume L., Rowe N. and Gorb S.
Structure and properties of the glandular surface in the digestive zone of the pitcher in the carnivorous plant Nepenthes ventrata and its role in the insect trapping and retention
The Journal of Experimental Biology, 2004, vol. 207, 2947-2963

Gaume L., Perret P., Gorb E., Gorb S., Labat J.-J. and Rowe N.
How do plant waxes cause flies to slide? Experimental tests of wax-based trapping mechanisms in three pitfall carnivorous plants
Arthropod Structure & Development, 2004, vol. 33, 103-111

Media Contact

Dr. Andreas Trepte Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpg.de/

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer