Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mathematisches Modell zur Vielfalt der Gehirne

06.01.2006


Max-Planck-Forscher am Bernstein Center for Computational Neuroscience Göttingen beschreibt Prinzipien der Selbstorganisation bei der Entwicklung des Gehirns. Mit Hilfe der Mathematik kann der Göttinger Neurophysiker Dr. Fred Wolf die Ausbildung individueller neuronaler Architekturen bei der Gehirnentwicklung erklären.


Kortikale Orientierungskarte im Sehsystem der Katze (ca. 6mm²) S. Löwel, IfN Magdeburg



Das menschliche Gehirn enthält Milliarden von Nervenzellen,von denen jede einzelne an durchschnittlich zehntausend Kontaktstellen mit anderen verknüpft ist. Damit dieser hochkomplexe Apparat solch erstaunliche Leistungen vollbringen kann wie Denken, Lernen oder Sehen, muss die Verschaltung während der Entwicklung des Gehirns im Embryo und frühem Kindesalter präzise geregelt sein. Das heißt aber keinesfalls, dass die Gehirnentwicklung immer nach dem gleichen Schema abläuft - schließlich ist jedes Gehirn ein einzigartiges Produkt und unterscheidet sich von jedem anderen. Dennoch folgt die Entwicklung bestimmten Prinzipien und Gesetzen. Fred Wolf, Leiter der Forschungsgruppe Theoretische Neurophysik am Max-Planck-Institut für Dynamik und Selbstorganisation und Gründungsmitglied des Bernstein Center for Computational Neuroscience Göttingen hat für die Entwicklung des visuellen Kortex, der primären Verarbeitungsstation optischer Eindrücke, nun solche Prinzipien mathematisch formuliert. Wolfs Untersuchungen zeigen, warum die gleichen Gesetzmäßigkeiten in verschiedenen Gehirnen in der Regel zu sehr verschiedenen neuronalen Architekturen führen - selbst bei eineiigen Zwillingen. Die Arbeit wurde in dem renommierten Fachmagazin Physical Review Letters (Band 95, 208701) veröffentlicht.



Jeder visuelle Eindruck unserer Umwelt enthält eine Vielzahl von Linien und Konturen. Neurone im primären visuellen Kortex reagieren stark auf Konturelemente und sind dabei jeweils auf eine bestimmte Orientierung spezialisiert: Manche Neurone reagieren auf waagerechte Linien, andere zum Beispiel auf Konturen im 30-Grad Winkel. Damit das Gehirn aus dem Aktivitätsmuster aller Neurone ein Bild zusammensetzen kann, kommt es sehr genau darauf an, wie Neurone mit bestimmter Orientierungspräferenz angeordnet und wie sie mit anderen Neuronen verschaltet sind.

Mit neuen bildgebenden Methoden kann man heutzutage eine genaue Karte der Verteilung der verschiedenen Neurone mit ihren spezifischen Orientierungspräferenzen im Kortex erstellen. Neurone unterschiedlicher Orientierungspräferenz bilden ein kompliziertes Muster, wobei sich Neurone, die auf die gleiche Richtung reagieren, zu Bereichen zusammenfügen und Bereiche ähnlicher Orientierungspräferenz meist nebeneinander liegen (siehe Abbildung). Die Anordnung der Neurone bestimmter Orientierungspräferenz bildet kein periodisches "Kachelmuster", sondern ist scheinbar chaotisch und unterscheidet sich von Gehirn zu Gehirn. Domänen, die einen kleinen Teil des Gesichtsfelds repräsentieren, enthalten jeweils Gruppen von Neuronen jeder Orientierungspräferenz. Damit das Gehirn ein Bild vollständig erfassen, zum Beispiel einen durchgängigen Strich als solchen erkennen kann, sind Neurone aus verschiedenen Bereichen des Kortex, die auf die gleiche Orientierung reagieren, miteinander verknüpft.

Die Muster der Orientierungspräferenz entstehen beim Menschen und anderen Säugetieren in den ersten Tagen nach der Geburt durch einen Selbstorganisationsprozess. Welche neuronale Kontakte neu entstehen und welche aufgelöst werden, hängt von den schon vorhandenen Kontakten ab. Selbstorganisationsprozesse sind in der Natur keine Seltenheit - allerdings ist die Entwicklung des visuellen Kortex ein Sonderfall unter diesen Prozessen. Die meisten Selbstorganisationprozesse sind physikalische Prozesse oder chemische Reaktionen, bei denen jedes Element nur mit seinem direkten Nachbarn reagiert. Das ist im visuellen Kortex anders. Neurone treten über weite Distanzen miteinander in Kontakt, damit - wie oben beschrieben - das Gehirn aus dem Aktivitätsmuster der Kortexneurone ein Bild erstellen kann. Nur unter Berücksichtigung dieser biologisch relevanten Tatsache ist es Wolf gelungen, ein mathematisches Modell zu entwickeln, das die Prozesse der Musterbildung im Gehirn realitätsnah nachbildet und in ein stabiles Gleichgewicht mündet.

Selbstorganisationsprozesse lassen sich - zumindest theoretisch - im Computer simulieren. Allerdings würde das für einen solch komplexen Prozess wie die dynamische Entwicklung des primären visuellen Kortex die Rechenkapazität jedes heutigen Computers sprengen. Um trotzdem zu einem mathematischen Modell zu kommen, benutzte Wolf Verfahren, das auf so genannten Symmetrieannahmen beruht. Wenn das mathematische Modell die Entstehung eines bestimmten Musters erlaubt - so lautete die Annahme - dann muss auch eine verschobene, gedrehte oder gespiegelte Version dieses Musters zulässig sein. Die Annahme ergibt sich zum Beispiel daraus, dass kein Ort innerhalb eines primären visuellen Kortexareals sich gegenüber einem anderen anatomisch auszeichnet. In der Theorie der Selbstorganisation entwickelte mathematische Methoden erlauben es, aus solchen Symmetrieannahmen Vorhersagen abzuleiten. Dadurch, dass Wolf diese Methoden für den visuellen Kortex nutzbar gemacht hat, wird es nun möglich, mit wesentlich weniger Rechenaufwand die Bildung neuronaler Muster quantitativ zu beschreiben - im Prinzip reichen Papier und Bleistift.

Das erste theoretische Modell, das die Selbstorganisation des Orientierungsmusters im visuellen Kortex simuliert, wurde im Jahre 1972 von Christoph von der Malsburg am Max-Planck-Institut für biophysikalische Chemie in Göttingen vorgeschlagen. Das Modell hat einen schwerwiegenden Nachteil - es lieferte ein streng periodisches Muster, hatte also hinsichtlich der räumlichen Anordnung der Neurone mit der Realität wenig zu tun. Auch nachfolgende Modelle, die in den vergangenen Jahren entwickelt wurden, brachten in dieser Hinsicht keine Verbesserung. Das Modell von Wolf ist das erste, das die Tatsache mit einbezieht, dass Neurone über längere Distanzen miteinander in Kontakt treten können und damit auch das erste, das realistische Muster vorhersagt, die nicht streng periodisch sind. Zusätzlich stellte sich bei den mathematischen Untersuchungen heraus, dass es in diesem Modell eine sehr große Zahl von möglichen Mustern gibt, deren Entstehung mit den gleichen mathematischen Gesetzen vereinbar sind. So lässt sich dann auch erklären, dass jedes Gehirn ein anderes Muster neuronaler Orientierungspräferenz hat, auch wenn die Gehirnentwicklung strengen mathematischen Regeln folgt.

Quelle:
Fred Wolf (2005). Symmetry, Multistability, and Long-Range Interactions in Brain Development. Phys. Rev. Lett. 95, 208701

Kontakt:
Dr. Fred Wolf
Max-Planck-Institut für Dynamik und Selbstorganisation
Bernstein Center for Computational Neuroscience
Bunsenstr. 10
37073 Göttingen
Tel: 0551 5176-423
Fax: 0551 5176-439
Email: fred@chaos.gwdg.de

Das Bernstein Center for Computational Neuroscience (BCCN) Göttingen ist ein vom BMBF gefördertes Verbundprojekt des Max-Planck-Instituts für Dynamik und Selbstorganisation, des Max-Planck-Instituts für biophysikalische Chemie, der Georg-August-Universität Göttingen, dem Deutschen Primaten Zentrum und der Otto Bock HealthCare GmbH. In dem interdisziplinären Verbund werden experimentelle Untersuchungen am Nervensystem mit mathematischen Modellen und Computersimulationen vereint. Die Kombination von Theorie und Praxis trägt zu einem besseren Verständnis der Gehirnfunktionen bei und führt damit z.B. zu neuen Therapien bei neurodegenerativen Krankheiten und Innovationen in der Neuroprothetik.

Dr. Tobias Niemann | idw
Weitere Informationen:
http://www.ds.mpg.de/
http://www.bccn-goettingen.de
http://www.bernstein-centers.de

Weitere Berichte zu: Computational Kortex Neuron Neuroscience Orientierungspräferenz Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Therapieansatz fördert die Reparatur von Blutgefässen nach einem Hirnschlag
25.06.2019 | Universität Zürich

nachricht In der thermischen Molekül-Falle Neue Ansätze zur Erforschung der molekularen Ursachen der Amyloid-Bildung
25.06.2019 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einzelne Atome im Visier

Mit der NMR-Spektroskopie ist es in den letzten Jahrzehnten möglich geworden, die räumliche Struktur von chemischen und biochemischen Moleküle zu erfassen. ETH-Forschende haben nun einen Weg gefunden, wie man dieses Messprinzip auf einzelne Atome anwenden kann.

Die Kernspinresonanz-Spektroskopie – kurz NMR-Spektroskopie – ist eine der wichtigsten physikalisch-chemischen Untersuchungsmethoden. Damit lässt sich...

Im Focus: Partielle Mondfinsternis am 16./17. Juli 2019

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde (VdS) und des Hauses der Astronomie in Heidelberg - Wie im letzten Jahr findet auch 2019 eine in den späten Abendstunden in einer lauen Sommernacht gut zu beobachtende Mondfinsternis statt, und zwar in der Nacht vom 16. auf den 17. Juli. Die Finsternis ist zwar nur partiell - der Mond tritt also nicht vollständig in den Erdschatten ein - es ist aber für die nächsten Jahre die einzige gut sichtbare Mondfinsternis im deutschen Sprachraum.

Am Dienstagabend, den 16. Juli, wird ein kosmisches Schauspiel zu sehen sein: Der Vollmond taucht zu einem großen Teil in den Schatten der Erde ein, es findet...

Im Focus: Fraunhofer IDMT zeigt akustische Qualitätskontrolle auf der Fachmesse für Messtechnik »Sensor + Test 2019«

Das Ilmenauer Fraunhofer-Institut für Digitale Medientechnologie IDMT präsentiert vom 25. bis 27. Juni 2019 am Gemeinschaftsstand der Fraunhofer-Gesellschaft (Stand 5-248) seine neue Lösung zur berührungslosen, akustischen Qualitätskontrolle von Werkstücken und Bauteilen. Da die Prüfung zerstörungsfrei funktioniert, kann teurer Prüfschrott vermieden werden. Das Prüfverfahren wird derzeit gemeinsam mit verschiedenen Industriepartnern im praktischen Einsatz erfolgreich getestet und hat das Technology Readiness Level (TRL) 6 erreicht.

Maschinenausfälle, Fertigungsfehler und teuren Prüfschrott reduzieren

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Erfolgreiche Praxiserprobung: Bidirektionale Sensorik optimiert das Laserauftragschweißen

Die Qualität generativ gefertigter Bauteile steht und fällt nicht nur mit dem Fertigungsverfahren, sondern auch mit der Inline-Prozessregelung. Die Prozessregelung sorgt für einen sicheren Beschichtungsprozess, denn Abweichungen von der Soll-Geometrie werden sofort erkannt. Wie gut das mit einer bidirektionalen Sensorik bereits beim Laserauftragschweißen im Zusammenspiel mit einer kommerziellen Optik gelingt, demonstriert das Fraunhofer-Institut für Lasertechnik ILT auf der LASER World of PHOTONICS 2019 auf dem Messestand A2.431.

Das Fraunhofer ILT entwickelt optische Sensorik seit rund 10 Jahren gezielt für die Fertigungsmesstechnik. Dabei hat sich insbesondere die Sensorik mit der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Innovationstag NEULAND: Erfindungen zum Anfassen

26.06.2019 | Veranstaltungen

17. Internationale Conference on Carbon Dioxide Utilization in Aachen

25.06.2019 | Veranstaltungen

Meeresleuchten, Klimawandel, Küstenmeere Afrikas – Spannende Vielfalt bei „Warnemünder Abenden 2019“

24.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Robust, Sauber, Ausdauernd: Neuartige Mikro-KWK-Pilotanlage geht nach erfolgreichem Labor-Langzeitversuch in Feldtest

26.06.2019 | Ökologie Umwelt- Naturschutz

Innovationstag NEULAND: Erfindungen zum Anfassen

26.06.2019 | Veranstaltungsnachrichten

Der Dunklen Materie auf der Spur

26.06.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics