Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mathematisches Modell zur Vielfalt der Gehirne

06.01.2006


Max-Planck-Forscher am Bernstein Center for Computational Neuroscience Göttingen beschreibt Prinzipien der Selbstorganisation bei der Entwicklung des Gehirns. Mit Hilfe der Mathematik kann der Göttinger Neurophysiker Dr. Fred Wolf die Ausbildung individueller neuronaler Architekturen bei der Gehirnentwicklung erklären.


Kortikale Orientierungskarte im Sehsystem der Katze (ca. 6mm²) S. Löwel, IfN Magdeburg



Das menschliche Gehirn enthält Milliarden von Nervenzellen,von denen jede einzelne an durchschnittlich zehntausend Kontaktstellen mit anderen verknüpft ist. Damit dieser hochkomplexe Apparat solch erstaunliche Leistungen vollbringen kann wie Denken, Lernen oder Sehen, muss die Verschaltung während der Entwicklung des Gehirns im Embryo und frühem Kindesalter präzise geregelt sein. Das heißt aber keinesfalls, dass die Gehirnentwicklung immer nach dem gleichen Schema abläuft - schließlich ist jedes Gehirn ein einzigartiges Produkt und unterscheidet sich von jedem anderen. Dennoch folgt die Entwicklung bestimmten Prinzipien und Gesetzen. Fred Wolf, Leiter der Forschungsgruppe Theoretische Neurophysik am Max-Planck-Institut für Dynamik und Selbstorganisation und Gründungsmitglied des Bernstein Center for Computational Neuroscience Göttingen hat für die Entwicklung des visuellen Kortex, der primären Verarbeitungsstation optischer Eindrücke, nun solche Prinzipien mathematisch formuliert. Wolfs Untersuchungen zeigen, warum die gleichen Gesetzmäßigkeiten in verschiedenen Gehirnen in der Regel zu sehr verschiedenen neuronalen Architekturen führen - selbst bei eineiigen Zwillingen. Die Arbeit wurde in dem renommierten Fachmagazin Physical Review Letters (Band 95, 208701) veröffentlicht.



Jeder visuelle Eindruck unserer Umwelt enthält eine Vielzahl von Linien und Konturen. Neurone im primären visuellen Kortex reagieren stark auf Konturelemente und sind dabei jeweils auf eine bestimmte Orientierung spezialisiert: Manche Neurone reagieren auf waagerechte Linien, andere zum Beispiel auf Konturen im 30-Grad Winkel. Damit das Gehirn aus dem Aktivitätsmuster aller Neurone ein Bild zusammensetzen kann, kommt es sehr genau darauf an, wie Neurone mit bestimmter Orientierungspräferenz angeordnet und wie sie mit anderen Neuronen verschaltet sind.

Mit neuen bildgebenden Methoden kann man heutzutage eine genaue Karte der Verteilung der verschiedenen Neurone mit ihren spezifischen Orientierungspräferenzen im Kortex erstellen. Neurone unterschiedlicher Orientierungspräferenz bilden ein kompliziertes Muster, wobei sich Neurone, die auf die gleiche Richtung reagieren, zu Bereichen zusammenfügen und Bereiche ähnlicher Orientierungspräferenz meist nebeneinander liegen (siehe Abbildung). Die Anordnung der Neurone bestimmter Orientierungspräferenz bildet kein periodisches "Kachelmuster", sondern ist scheinbar chaotisch und unterscheidet sich von Gehirn zu Gehirn. Domänen, die einen kleinen Teil des Gesichtsfelds repräsentieren, enthalten jeweils Gruppen von Neuronen jeder Orientierungspräferenz. Damit das Gehirn ein Bild vollständig erfassen, zum Beispiel einen durchgängigen Strich als solchen erkennen kann, sind Neurone aus verschiedenen Bereichen des Kortex, die auf die gleiche Orientierung reagieren, miteinander verknüpft.

Die Muster der Orientierungspräferenz entstehen beim Menschen und anderen Säugetieren in den ersten Tagen nach der Geburt durch einen Selbstorganisationsprozess. Welche neuronale Kontakte neu entstehen und welche aufgelöst werden, hängt von den schon vorhandenen Kontakten ab. Selbstorganisationsprozesse sind in der Natur keine Seltenheit - allerdings ist die Entwicklung des visuellen Kortex ein Sonderfall unter diesen Prozessen. Die meisten Selbstorganisationprozesse sind physikalische Prozesse oder chemische Reaktionen, bei denen jedes Element nur mit seinem direkten Nachbarn reagiert. Das ist im visuellen Kortex anders. Neurone treten über weite Distanzen miteinander in Kontakt, damit - wie oben beschrieben - das Gehirn aus dem Aktivitätsmuster der Kortexneurone ein Bild erstellen kann. Nur unter Berücksichtigung dieser biologisch relevanten Tatsache ist es Wolf gelungen, ein mathematisches Modell zu entwickeln, das die Prozesse der Musterbildung im Gehirn realitätsnah nachbildet und in ein stabiles Gleichgewicht mündet.

Selbstorganisationsprozesse lassen sich - zumindest theoretisch - im Computer simulieren. Allerdings würde das für einen solch komplexen Prozess wie die dynamische Entwicklung des primären visuellen Kortex die Rechenkapazität jedes heutigen Computers sprengen. Um trotzdem zu einem mathematischen Modell zu kommen, benutzte Wolf Verfahren, das auf so genannten Symmetrieannahmen beruht. Wenn das mathematische Modell die Entstehung eines bestimmten Musters erlaubt - so lautete die Annahme - dann muss auch eine verschobene, gedrehte oder gespiegelte Version dieses Musters zulässig sein. Die Annahme ergibt sich zum Beispiel daraus, dass kein Ort innerhalb eines primären visuellen Kortexareals sich gegenüber einem anderen anatomisch auszeichnet. In der Theorie der Selbstorganisation entwickelte mathematische Methoden erlauben es, aus solchen Symmetrieannahmen Vorhersagen abzuleiten. Dadurch, dass Wolf diese Methoden für den visuellen Kortex nutzbar gemacht hat, wird es nun möglich, mit wesentlich weniger Rechenaufwand die Bildung neuronaler Muster quantitativ zu beschreiben - im Prinzip reichen Papier und Bleistift.

Das erste theoretische Modell, das die Selbstorganisation des Orientierungsmusters im visuellen Kortex simuliert, wurde im Jahre 1972 von Christoph von der Malsburg am Max-Planck-Institut für biophysikalische Chemie in Göttingen vorgeschlagen. Das Modell hat einen schwerwiegenden Nachteil - es lieferte ein streng periodisches Muster, hatte also hinsichtlich der räumlichen Anordnung der Neurone mit der Realität wenig zu tun. Auch nachfolgende Modelle, die in den vergangenen Jahren entwickelt wurden, brachten in dieser Hinsicht keine Verbesserung. Das Modell von Wolf ist das erste, das die Tatsache mit einbezieht, dass Neurone über längere Distanzen miteinander in Kontakt treten können und damit auch das erste, das realistische Muster vorhersagt, die nicht streng periodisch sind. Zusätzlich stellte sich bei den mathematischen Untersuchungen heraus, dass es in diesem Modell eine sehr große Zahl von möglichen Mustern gibt, deren Entstehung mit den gleichen mathematischen Gesetzen vereinbar sind. So lässt sich dann auch erklären, dass jedes Gehirn ein anderes Muster neuronaler Orientierungspräferenz hat, auch wenn die Gehirnentwicklung strengen mathematischen Regeln folgt.

Quelle:
Fred Wolf (2005). Symmetry, Multistability, and Long-Range Interactions in Brain Development. Phys. Rev. Lett. 95, 208701

Kontakt:
Dr. Fred Wolf
Max-Planck-Institut für Dynamik und Selbstorganisation
Bernstein Center for Computational Neuroscience
Bunsenstr. 10
37073 Göttingen
Tel: 0551 5176-423
Fax: 0551 5176-439
Email: fred@chaos.gwdg.de

Das Bernstein Center for Computational Neuroscience (BCCN) Göttingen ist ein vom BMBF gefördertes Verbundprojekt des Max-Planck-Instituts für Dynamik und Selbstorganisation, des Max-Planck-Instituts für biophysikalische Chemie, der Georg-August-Universität Göttingen, dem Deutschen Primaten Zentrum und der Otto Bock HealthCare GmbH. In dem interdisziplinären Verbund werden experimentelle Untersuchungen am Nervensystem mit mathematischen Modellen und Computersimulationen vereint. Die Kombination von Theorie und Praxis trägt zu einem besseren Verständnis der Gehirnfunktionen bei und führt damit z.B. zu neuen Therapien bei neurodegenerativen Krankheiten und Innovationen in der Neuroprothetik.

Dr. Tobias Niemann | idw
Weitere Informationen:
http://www.ds.mpg.de/
http://www.bccn-goettingen.de
http://www.bernstein-centers.de

Weitere Berichte zu: Computational Kortex Neuron Neuroscience Orientierungspräferenz Prozess

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Komplexe biologische Systeme können nicht ohne Chaos existieren
17.02.2020 | Universität Rostock

nachricht Neue Hauptdarsteller im Meeresboden: Eine bislang kaum beachtete Bakteriengruppe im Rampenlicht
17.02.2020 | Max-Planck-Institut für Marine Mikrobiologie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Erste Untersuchungsergebnisse zum "Sensations-Meteoritenfall" von Flensburg

17.02.2020 | Geowissenschaften

Lichtpulse bewegen Spins von Atom zu Atom

17.02.2020 | Physik Astronomie

Freiburger Forscher untersucht Ursprünge der Beschaffenheit von Oberflächen

17.02.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics