Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vitale Zellstrukturen halten Einzug in die Medizintechnik

16.12.2005


"Biologisierung" elektro-mechanischer Systeme macht Implantate widerstandsfähiger"



In der Medizintechnik der nächsten Jahre sehe ich drei herausragende Trends: die weitere Miniaturisierung, die verstärkte Computerisierung und die zunehmende Biologisierung." Für Univ.-Prof. Dr. Thomas Schmitz-Rode erhält die Biomedizinische Technik im Rahmen der zukünftigen Gesundheitswirtschaft eine entscheidende Schrittmacherfunktion. "Deutschland hält auf diesem Gebiet mit rund 14 Milliarden Jahresumsatz nach den USA eine weltweite Spitzenposition. Diese Marktführerschaft gilt es auszubauen", so der Direktor des Helmholtz-Instituts für Biomedizinische Technik der RWTH Aachen.



Die Voraussetzungen und das Potential dazu sieht der gelernte Ingenieur und Mediziner an der Technischen Hochschule Aachen gegeben: Wie kaum an einem anderen europäischen Standort arbeiten hier seit Jahrzehnten Ärzte und Techniker intensiv zusammen. Derzeit arbeiten allein 7 Professoren und 100 Wissenschaftliche Mitarbeiter in diesem Bereich. Die erfolgreiche Entwicklung und Erprobung von Kunstherzen und Blutpumpen belegt diese innovative fachübergreifende Zusammenarbeit.

"Nach der Informatik und den Materialwissenschaften stößt neuerdings die Zell- und Molekularbiologie zur Medizintechnik hinzu", erläutert Prof. Schmitz-Rode, "die technische Komponente wird nunmehr durch eine biologische ergänzt". So richtet der junge Lehrstuhlinhaber für Angewandte Medizintechnik gerade eine neue Arbeitsgruppe für kardiovaskuläres Tissue Engeneering ein. Die technischen Systeme werden dabei noch stärker mit den biologischen verzahnt. Prof. Schmitz-Rode: "Aus der Verbindung von materialwissenschaftlichen und mechatronischen Komponenten mit Molekül- und Zellstrukturen entwickeln wir Hybridfunktionen, die konkrete Hilfestellung für den Patienten bringen."

Beispielprojekte des neuen Arbeitsgruppenleiters Dr. med. Stefan Jockenhövel sind mitwachsende Herzklappen für Kinder, gezüchtete Gefäßsegmente aus körpereigenem Material und sogenannte Myokard-Patches - Gewebe-Pflaster, die infarktgeschädigte Herzmuskelbereiche ersetzen sollen. "Das Zellmaterial wird dafür auf einen biokompatiblen Träger aufgetragen", schildert Schmitz-Rode. So können beispielsweise Herzklappen aus Elastomeren mit einer körpereigenen Zellschicht belegt werden. Ein damit verbundenes Ziel ist die Reduktion gerinnungshemmender Medikamente auf ein Mindestmaß. "Für einen Arterienersatz bei Bypass-Operationen konditionieren wir körpereigenes Material im Bioreaktor unter pulsierender Belastung", beschreibt Professor Schmitz-Rode einen anderen Einsatz. So kann es sich schrittweise an die spätere Belastungen im Körper anpassen. Insgesamt ist Schmitz-Rode überzeugt, dass durch diese Einführung vitaler Zell- und Molekularstrukturen in die Medizintechnik Implantate widerstandsfähiger und langlebiger werden. Von der engen Verzahnung und Interaktion der "klassischen" kardiovaskulären Technik (Arbeitsgruppenleiter Dr.-Ing. Ulrich Steinseifer) mit der Tissue-Engineering-Gruppe von Dr. Jockenhövel verspricht sich Schmitz-Rode innovative Impulse, die zur Entwicklungen neuer biohybrider Systeme führen werden.

Der Medizintechniker warnt jedoch vor zu großen Erwartungen: " Die Forschungs- und Entwicklungszeiträume liegen bei fünf bis zehn Jahren." In dieser Zeit gibt es viele Fragen zu beantworten: Wie verhält sich das Oberflächenmaterial bei längerfristigem Einsatz in der Körperumgebung? Wie muss das Design der Implantate verbessert werden? Wie müssen die Strömungseigenschaften optimiert werden, damit die Systeme blutschonender werden?

Diese Probleme geht das Helmholtz-Institut konsequent unter Einbeziehung anderer Fachdisziplinen und der Industrie an. Schmitz-Rode: "Unser Ziel ist eine schlagkräftigere Umsetzung von Ergebnissen aus der Grundlagenforschung über die Produktentwicklung bis hin zur experimentellen Erprobung." Und dazu werden auch die Kompetenzen der Hochschule in benachbarten Fachgebieten noch zielgerichteter einbezogen - etwa in der Zusammenarbeit innerhalb der Arbeitsgemeinschaft Helmholtz-Institut mit Professu-ren aus Maschinenbau, Elektrotechnik, Biologie und Medizin sowie auch mit dem benachbarten Deutschen Wollforschungsinstitut. "In dieser strategischen Allianz werden wir auch die internationale Sichtbarkeit dieses Aachener Exzellenz-Clusters weiter steigern," ist der Medizintechniker überzeugt.

Weitere Informationen erhalten Sie unmittelbar bei Univ.-Prof. Dr. med. Dipl.-Ing. Thomas Schmitz-Rode, Inhaber des Lehrstuhls für Angewandte Medizintechnik im Helmholtz-Institut für Biomedizinische Technik der RWTH Aachen, Pauwelsstraße 20, 52074 Aachen, Telefon 0241/80-87111, Fax 0241/80-82026, e-mail smiro@hia.rwth-aachen.de. Toni Wimmer

Dr. Christof Zierath | idw
Weitere Informationen:
http://www.rwth-aachen.de

Weitere Berichte zu: Helmholtz-Institut Implantat Medizintechnik Zellstruktur

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics