Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur des Photosystems II bei 3 Angström aufgelöst.

15.12.2005


Wissenschaftler publizieren verfeinerte Strukturdaten des Protein-Cofaktor-Komplexes Photosystem II in "Nature" am 15.12.2005


Das jetzige Leben auf der Erde wurde nur möglich, weil vor 3,5 Milliarden Jahren Cyanobakterien mit der Photosynthese begannen, einem der wichtigsten biologischen Energie-Umwandlungsprozesse, der später von grünen Algen und höheren Pflanzen übernommen wurde. Bei der Photosynthese fängt das grüne Pigment Chlorophyll Sonnenlicht ein, dessen Energie benutzt wird, um Wasser oxidativ in lebensnotwendigen Sauerstoff zu spalten (Lichtreaktion). Die dabei freigesetzten Wasserstoff-Ionen und Elektronen wandeln in einem weiteren Schritt Kohlendioxid aus der Luft in Kohlenhydrate um (Dunkelreaktion), die Grundlage aller Nahrung sind.

Diese beiden gekoppelten Prozesse werden in der Thykaloidmembran der Zellen von zwei großen Protein-Cofaktor-Komplexen bewerkstelligt. Die Struktur des für die Sauerstoffentwicklung zuständigen Photosystems II (PS II) wurde jetzt mit einer Auflösung von drei Angström* von Prof. Dr. Wolfram Saenger am Institut für Chemie und Biochemie der Freien Universität Berlin gemeinsam mit Kollegen vom Max-Volmer-Laboratorium der TU Berlin am Donnerstag, dem 15. Dezember 2005, in der renommierten Fachzeitschrift "Nature" publiziert.


Wolfram Saenger ist Spezialist für die Röntgen-Kristallstrukturanalyse großer Biomoleküle an der Freien Universität Berlin. Seit etwa zwanzig Jahren erforscht er die Photosynthese in Zusammenarbeit mit Kollegen der Technischen Universität Berlin (früher Prof. Horst Tobias Witt, jetzt Dr. Athina Zouni). Gegenüber der erstmals 2001 von der Freien Universität Berlin und der TU veröffentlichten Struktur des PS II - damals mit einer Auflösung von 3,8 Angström - eröffnen die neuen Daten wesentlich detailliertere Einblicke in den großen Protein-Cofaktor-Komplex, der aus dem Cyanobakterium Thermosynechococcus elongatus isoliert wird und als Dimer vorliegt.

In großer Klarheit zeigen sich nun die dreidimensionalen Strukturen von je zwanzig Protein-Untereinheiten (pro Monomer), 35 Chlorophyll-a Molekülen, elf Carotinen, je zwei Pheophytinen, Plastochinonen und Haemgruppen, 14 Lipiden, je einem Bicarbonat- und Eisen(II)-Ion, drei Detergenzmolekülen und des einzigartigen, aus vier Mangan-Ionen und einem Calcium-Ion bestehenden Clusters, an dem das Wasser letztlich oxidiert wird.

Die Zuordnung der Carotine gewährt neue Einblicke in den Elektronen- und Energietransfer im Reaktionszentrum und in den Licht sammelnden Antennen-Untereinheiten. Die 14 integral-gebundenen Lipide waren bis dato nicht erkennbar. Ihre hohe Zahl und ihre Positionen sprechen dafür, dass sie eine wichtige Funktion für Flexibilität und Architektur des PS II ausüben.

Aus Position, Geometrie und Koordination der Metall-Ionen im Mangan-Calcium-Cluster erhoffen sich Physiker und Chemiker entscheidende Informationen zum Verständnis des Mechanismus der Wasseroxidation. Um Wasser zu Sauerstoff zu oxidieren, bedarf es des höchsten elektrischen Potentials, das je in einem Organismus gefunden wurde: 1,2 Volt. Je mehr Details sichtbar werden, desto klarer wird: Hinter der allgemein bekannten, scheinbar simplen chemischen Gleichung der Photosynthese verbergen sich Dutzende Einzelreaktionen, viele winzige chemische Klimmzüge, mit denen Bakterien, grüne Algen und Pflanzen diesen gewaltigen Prozess bewerkstelligen.

Athina Zouni und Jan Kern vom Max-Volmer-Laboratorium der TU Berlin präparierten, reinigten und kristallisierten den Protein-Cofaktor-Komplex des Photosystems II. Die Struktur wurde anhand von Röntgen-Beugungsdaten von Bernhard Loll, Jacek Biesiadka und Wolfram Saenger von der Freien Universität Berlin errechnet.

Die grundlegenden strukturellen Arbeiten an den Photosystemen I und II wurden zuvor im Rahmen des Sonderforschungsbereichs "Gerichtete Membranprozesse" (Sfb 312) und werden jetzt im Sonderforschungsbereich "Protein-Kofaktor-Wechselwirkungen in biologischen Prozessen" (Sfb 498) der Deutschen Forschungsgemeinschaft gefördert. Sie dienen dem besseren Verständnis der Photosynthese und damit generell der Umwandlung von Lichtenergie in chemische oder mechanische Energie. Die detaillierte Kenntnis dieser Vorgänge ist eine notwendige Voraussetzung, um Umwelt- und Ressourcen-schonende Energieformen für die Zukunft entwickeln zu können. Dies den Algen, Bakterien und Pflanzen einmal ähnlich raffiniert nachzumachen, wird eine große Herausforderung für die Wissenschaft sein.

* 1 Angström = zehn hoch minus zehn Meter

Von Catarina Pietschmann

Nähere Informationen erteilen Ihnen gern:
- Prof. Dr. Wolfram Saenger, Institut für Chemie und Biochemie / Kristallographie der Freien Universität Berlin, Tel.: 030 / 838-53412, E-Mail: saenger@chemie.fu-berlin.de
- Dr. Athina Zouni, Max-Volmer-Laboratorium für Biophysikalische Chemie der Technischen Universität Berlin, Tel.: 030 / 314-25580 oder 314-25650, E-Mail: Zouni@phosis1.chem.tu-berlin.de

Ilka Seer | idw
Weitere Informationen:
http://www.fu-berlin.de

Weitere Berichte zu: Photosynthese Photosystem Protein-Cofaktor-Komplex

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

nachricht Einbahnstraße für das Salz
21.09.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics