Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Struktur des Photosystems II bei 3 Angström aufgelöst.

15.12.2005


Wissenschaftler publizieren verfeinerte Strukturdaten des Protein-Cofaktor-Komplexes Photosystem II in "Nature" am 15.12.2005


Das jetzige Leben auf der Erde wurde nur möglich, weil vor 3,5 Milliarden Jahren Cyanobakterien mit der Photosynthese begannen, einem der wichtigsten biologischen Energie-Umwandlungsprozesse, der später von grünen Algen und höheren Pflanzen übernommen wurde. Bei der Photosynthese fängt das grüne Pigment Chlorophyll Sonnenlicht ein, dessen Energie benutzt wird, um Wasser oxidativ in lebensnotwendigen Sauerstoff zu spalten (Lichtreaktion). Die dabei freigesetzten Wasserstoff-Ionen und Elektronen wandeln in einem weiteren Schritt Kohlendioxid aus der Luft in Kohlenhydrate um (Dunkelreaktion), die Grundlage aller Nahrung sind.

Diese beiden gekoppelten Prozesse werden in der Thykaloidmembran der Zellen von zwei großen Protein-Cofaktor-Komplexen bewerkstelligt. Die Struktur des für die Sauerstoffentwicklung zuständigen Photosystems II (PS II) wurde jetzt mit einer Auflösung von drei Angström* von Prof. Dr. Wolfram Saenger am Institut für Chemie und Biochemie der Freien Universität Berlin gemeinsam mit Kollegen vom Max-Volmer-Laboratorium der TU Berlin am Donnerstag, dem 15. Dezember 2005, in der renommierten Fachzeitschrift "Nature" publiziert.


Wolfram Saenger ist Spezialist für die Röntgen-Kristallstrukturanalyse großer Biomoleküle an der Freien Universität Berlin. Seit etwa zwanzig Jahren erforscht er die Photosynthese in Zusammenarbeit mit Kollegen der Technischen Universität Berlin (früher Prof. Horst Tobias Witt, jetzt Dr. Athina Zouni). Gegenüber der erstmals 2001 von der Freien Universität Berlin und der TU veröffentlichten Struktur des PS II - damals mit einer Auflösung von 3,8 Angström - eröffnen die neuen Daten wesentlich detailliertere Einblicke in den großen Protein-Cofaktor-Komplex, der aus dem Cyanobakterium Thermosynechococcus elongatus isoliert wird und als Dimer vorliegt.

In großer Klarheit zeigen sich nun die dreidimensionalen Strukturen von je zwanzig Protein-Untereinheiten (pro Monomer), 35 Chlorophyll-a Molekülen, elf Carotinen, je zwei Pheophytinen, Plastochinonen und Haemgruppen, 14 Lipiden, je einem Bicarbonat- und Eisen(II)-Ion, drei Detergenzmolekülen und des einzigartigen, aus vier Mangan-Ionen und einem Calcium-Ion bestehenden Clusters, an dem das Wasser letztlich oxidiert wird.

Die Zuordnung der Carotine gewährt neue Einblicke in den Elektronen- und Energietransfer im Reaktionszentrum und in den Licht sammelnden Antennen-Untereinheiten. Die 14 integral-gebundenen Lipide waren bis dato nicht erkennbar. Ihre hohe Zahl und ihre Positionen sprechen dafür, dass sie eine wichtige Funktion für Flexibilität und Architektur des PS II ausüben.

Aus Position, Geometrie und Koordination der Metall-Ionen im Mangan-Calcium-Cluster erhoffen sich Physiker und Chemiker entscheidende Informationen zum Verständnis des Mechanismus der Wasseroxidation. Um Wasser zu Sauerstoff zu oxidieren, bedarf es des höchsten elektrischen Potentials, das je in einem Organismus gefunden wurde: 1,2 Volt. Je mehr Details sichtbar werden, desto klarer wird: Hinter der allgemein bekannten, scheinbar simplen chemischen Gleichung der Photosynthese verbergen sich Dutzende Einzelreaktionen, viele winzige chemische Klimmzüge, mit denen Bakterien, grüne Algen und Pflanzen diesen gewaltigen Prozess bewerkstelligen.

Athina Zouni und Jan Kern vom Max-Volmer-Laboratorium der TU Berlin präparierten, reinigten und kristallisierten den Protein-Cofaktor-Komplex des Photosystems II. Die Struktur wurde anhand von Röntgen-Beugungsdaten von Bernhard Loll, Jacek Biesiadka und Wolfram Saenger von der Freien Universität Berlin errechnet.

Die grundlegenden strukturellen Arbeiten an den Photosystemen I und II wurden zuvor im Rahmen des Sonderforschungsbereichs "Gerichtete Membranprozesse" (Sfb 312) und werden jetzt im Sonderforschungsbereich "Protein-Kofaktor-Wechselwirkungen in biologischen Prozessen" (Sfb 498) der Deutschen Forschungsgemeinschaft gefördert. Sie dienen dem besseren Verständnis der Photosynthese und damit generell der Umwandlung von Lichtenergie in chemische oder mechanische Energie. Die detaillierte Kenntnis dieser Vorgänge ist eine notwendige Voraussetzung, um Umwelt- und Ressourcen-schonende Energieformen für die Zukunft entwickeln zu können. Dies den Algen, Bakterien und Pflanzen einmal ähnlich raffiniert nachzumachen, wird eine große Herausforderung für die Wissenschaft sein.

* 1 Angström = zehn hoch minus zehn Meter

Von Catarina Pietschmann

Nähere Informationen erteilen Ihnen gern:
- Prof. Dr. Wolfram Saenger, Institut für Chemie und Biochemie / Kristallographie der Freien Universität Berlin, Tel.: 030 / 838-53412, E-Mail: saenger@chemie.fu-berlin.de
- Dr. Athina Zouni, Max-Volmer-Laboratorium für Biophysikalische Chemie der Technischen Universität Berlin, Tel.: 030 / 314-25580 oder 314-25650, E-Mail: Zouni@phosis1.chem.tu-berlin.de

Ilka Seer | idw
Weitere Informationen:
http://www.fu-berlin.de

Weitere Berichte zu: Photosynthese Photosystem Protein-Cofaktor-Komplex

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren
16.11.2018 | Universität Bayreuth

nachricht Günstiger Katalysator für das CO2-Recycling
16.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: Eine kalte Supererde in unserer Nachbarschaft

Der sechs Lichtjahre entfernte Barnards Stern beherbergt einen Exoplaneten

Einer internationalen Gruppe von Astronomen unter Beteiligung des Max-Planck-Instituts für Astronomie in Heidelberg ist es gelungen, beim nur sechs Lichtjahre...

Im Focus: Mit Gold Krankheiten aufspüren

Röntgenfluoreszenz könnte neue Diagnosemöglichkeiten in der Medizin eröffnen

Ein Präzisions-Röntgenverfahren soll Krebs früher erkennen sowie die Entwicklung und Kontrolle von Medikamenten verbessern können. Wie ein Forschungsteam unter...

Im Focus: Ein Chip mit echten Blutgefäßen

An der TU Wien wurden Bio-Chips entwickelt, in denen man Gewebe herstellen und untersuchen kann. Die Stoffzufuhr lässt sich dabei sehr präzise dosieren.

Menschliche Zellen in der Petrischale zu vermehren, ist heute keine große Herausforderung mehr. Künstliches Gewebe herzustellen, durchzogen von feinen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Kalikokrebse: Erste Fachtagung zu hochinvasiver Tierart

16.11.2018 | Veranstaltungen

Können Roboter im Alter Spaß machen?

14.11.2018 | Veranstaltungen

Tagung informiert über künstliche Intelligenz

13.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Mikroplastik in Kosmetik

16.11.2018 | Studien Analysen

Neue Materialien – Wie Polymerpelze selbstorganisiert wachsen

16.11.2018 | Materialwissenschaften

Anomale Kristalle: ein Schlüssel zu atomaren Strukturen von Schmelzen im Erdinneren

16.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics