Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Biologische Festkörper NMR-Spektroskopie bei höchsten Feldstärken

23.11.2005


Zentrum für Biomolekulare Magnetische Resonanz erhält als zweite Institution weltweit eines der leistungsstärksten Geräte



Die DFG hat mehrere Millionen Euro für die Anschaffung eines 850 MHz Festkörper NMR-Spektrometers bewilligt. Es wird im Zentrum für Biomolekulare Magnetische Resonanz des Fachbereichs Biochemie, Chemie und Pharmazie im Labor von Prof. Clemens Glaubitz installiert und betrieben. Das Gerät wird voraussichtlich ab 2007 verfügbar sein.



Damit wird in Frankfurt das zweite 850 MHz Festkörper NMR-Spektrometer weltweit für die biomolekulare Forschung zur Verfügung stehen.

Die bisher für die Festkörper NMR genutzten Spektrometer arbeiten bei bis zu 750MHz; in Frankfurt bei 400 und 600MHz. Für Arbeiten an Molekülen in der flüssigen Phase leisten die Geräte bis zu 900MHz. Diese Frequenz bezeichnet die Präzession, also die Kreiselbewegung der Protonen der Probe um das angelegte Magnetfeld. Je schneller sie kreiseln, desto höher ist die spektrale Empfindlichkeit und die Auflösung des Gerätes. Der Einsatz des neuen Gerätes in Frankfurt zielt daher auf eine signifikante Empfindlichkeitssteigerung der Festkörper NMR durch höhere Feldstärken aber auch durch bessere Detektionssysteme.

Festkörper NMR (nuclear magnetic resonance) kommt insbesondere dann zur Anwendung, wenn die zu untersuchenden biomolekularen Systeme sich auf der Zeitskala der NMR-Spektroskopie sehr langsam oder fast nicht bewegen, also sich scheinbar wie "Festkörper" verhalten. Hierzu gehören insbesondere unlösliche Systeme wie Membranproteine, fibrillenbildende globuläre Proteine oder einfach sehr große molekulare Komplexe.

Die Arbeitsgruppe um Prof. Clemens Glaubitz beschäftigt sich vor allem mit Membranproteinen. Ein Schwerpunkt liegt herbei im Verständnis der Arbeitsweise bakterieller Multidrug-Transporter. Das sind integrale Membranproteine, die Antibiotika aus der Zelle durch die Membran transportieren und somit deren Resistenz erhöhen.

Festkörper NMR kommt auch zum Einsatz, um die Struktur von Hormonen, die an GPCRs (G-protein coupled receptors) gebunden sind, zu bestimmen. GPCRs gehören zu den pharmakologisch bedeutsamsten Membranproteinen und stellen wichtige ’Ziele’ (Targets) für die Medikamentenentwicklung dar. Hier bestehen enge Kooperationen mit dem Frankfurter Max-Planck-Institut für Biophysik; Prof. Helmut Michel.

Ein dritter Themenschwerpunkt richtet sich auf retinal-basierte Photosynthese in der durchlichteten Zone der Ozeane. Festkörper NMR wird hier eingesetzt, um Struk- tur, Funktion und Dynamik retinal-tragender Membranproteine aus gamma-Proteobakterien aus dem Plankton der Ozeane aufzuklären. Genauere Untersuchungen sollen Aufschluss darüber geben, wie diese Art der Photosynthese funktioniert. Bislang ging man von der Annahme aus, dass die meiste Energie vor allem auf Basis von Chlorophyll erzeugt wird.

Mit der Bewilligung dieses Gerätes folgt die DFG auch dem Konzept eines interuniversitären NMR-Zentrums, denn Gruppen aus Regensburg, Jena und Berlin werden zusätzlich Messzeit in Frankfurt erhalten, um an RNA-Protein-Komplexen, Membranproteinen sowie an siliziumhaltigen Zellwänden zu forschen. In Frankfurt werden nicht nur die Forschungsgruppen des BMRZ - Prof. Harald Schwalbe, Prionenproteine, RNA-Protein-Interaktionen, Prof. Volker Dötsch; große Proteinkomplexe, sondern auch die Projekte der SFBs Molekulare Bioenergetik (478), Functional Membrane Proteomics (628), RNA-Ligand Interactions (579) sowie des CMP profitieren. Die Bedeutung des BMRZ wird auch durch seine Funktion als Euroean Large Scale Facility unterstrichen.

Die Beschaffung dieses Hochleistungsspektrometers folgt einer gemeinsamen Initiative mit dem Göttinger MPI für Biophysikalische Chemie zur Verbesserung der verfügbaren Messempfindlichkeit der Festkörper NMR und deren Anwendung auf Membranproteine und aggregierte Proteinzustände.

Kontakt: Prof. Clemens Glaubitz; Institute for Biophysical Chemistry
Centre for Biomolecular Magnetic Resonance; Marie Curie Str. 9; 60439 Frankfurt; Tel.: 069-798-29927; Fax.: 069-798-29929; E-Mail: glaubitz@em.uni-frankfurt.de

Dr. Ralf Breyer | idw
Weitere Informationen:
http://www.biophyschem.uni-frankfurt.de

Weitere Berichte zu: Feldstärke Festkörper Membranprotein NMR NMR-Spektroskopie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Experimentelles Tumormodell offenbart neue Ansätze für die Immuntherapie bei Glioblastom-Patienten
18.02.2020 | Universitätsmedizin Mannheim

nachricht Kleber für gebrochene Herzen
18.02.2020 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lichtpulse bewegen Spins von Atom zu Atom

Forscher des Max-Born-Instituts für Nichtlineare Optik und Kurzpulsspektroskopie (MBI) und des Max-Planck-Instituts für Mikrostrukturphysik haben durch die Kombination von Experiment und Theorie die Frage gelöst, wie Laserpulse die Magnetisierung durch ultraschnellen Elektronentransfer zwischen verschiedenen Atomen manipulieren können.

Wenige nanometerdünne Filme aus magnetischen Materialien sind ideale Testobjekte, um grundlegende Fragestellungen des Magnetismus zu untersuchen. Darüber...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Höhere Treibhausgasemissionen durch schnelles Auftauen des Permafrostes

18.02.2020 | Geowissenschaften

Supermagnete aus dem 3D-Drucker

18.02.2020 | Maschinenbau

Warum Lebewesen schrumpfen

18.02.2020 | Geowissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics