Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Zellen

10.11.2005


Poröse Kapseln aus Molybdänoxid können als Modell für biologische Ionentransportprozesse dienen.



Müssen Zellen immer aus organischen Kohlenstoffverbindungen aufgebaut sein? Wenn findige Wissenschaftler ihre Phantasie bemühen, finden sie rasch eine Antwort auf diese Frage. Das zeigen Arbeiten von Achim Müller aus Bielefeld und seinen Mitarbeitern. Sie konstruierten eine "künstliche Zelle" aus einem anorganischen Riesenmolekül: einem kugelförmigen Polyoxymolybdatcluster. 20 ringförmige Öffnungen, die von einer alternierenden Folge von je neun Molybdän- und neun Sauerstoffatomen umschlossen wurden, bildeten die Poren der künstlichen Zellmembran. An der Innenseite waren zweifach negativ geladene Sulfatgruppen kovalent gebunden, die für eine deutliche negative Ladung der Kapseloberfläche sorgten. Im Innern der Kugel befanden sich Wassermoleküle. Jede Pore war durch einen "Stöpsel" aus einem Harnstoffmolekül verschlossen, der über schwache, nicht kovalente Wechselwirkungen an den Mo9O9-Ring angelagert war.

... mehr zu:
»Ca2+-Ionen »Kapsel »Poren »Zelle »Zellmembran


Typisch für biologische Signalprozesse in lebenden Zellen, ist ein kontrollierter Ionenfluss durch spezielle Kanalproteine in der Zellmembran. Diese können durch die Bindung eines geeigneten Liganden gesteuert werden oder über das elektrochemische Potential an der Zellmembran, letztendlich also durch Konzentrationsunterschiede von Ionen innerhalb und außerhalb der Zelle. Bei einer Vielzahl von biologischen Funktionen spielen Calciumionen (Ca2+) eine wichtige Rolle. Aus diesem Grunde wählten Müller et al. Ca 2+ für ihre weiteren Experimente aus. Sie versetzten wässrige Lösungen der Molybdatkapseln mit Ca2+-Ionen und untersuchten die entstehenden Kristalle mithilfe der Röntgenstrukturanalyse. Dabei stellte sich heraus, dass nicht einfach Calciumionen in die Kapsel eingewandert waren, auch die Harnstoffstöpsel befanden sich wieder auf ihren Plätzen in den Mo9O9 -Poren.

Dieses Verhalten der künstlichen Zelle zeigt Parallelen zu den Vorgängen, die sich an einem spannungsgesteuerten Ionenkanal in einer lebenden Zelle abspielen: Im Ausgangszustand sind die Poren geschlossen. Werden nun Ca2+-Ionen im Überschuss zugegeben, so gleichen die positiven Ca2+-Ionen die negativen Ladungen der Kugeloberfläche aus. Dadurch ändert sich der elektrochemische Gradient an der künstlichen Zellmembran. Die Deckel der Poren öffnen sich und Ca 2+-Ionen können in die Kapsel eindringen. Möglicherweise verändert dies erneut die Ladungsverteilung an der künstlichen Zellmembran und die Poren schließen sich wieder.

Autor: Achim Müller, Universität Bielefeld (Germany), http://www.uni-bielefeld.de/chemie/ac1/index.htm

Angewandte Chemie: Presseinfo 45/2005

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.gdch.de
http://www.uni-bielefeld.de/chemie/ac1/index.htm
http://presse.angewandte.de

Weitere Berichte zu: Ca2+-Ionen Kapsel Poren Zelle Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Elektronenbeugung zeigt winzige Kristalle in neuem Licht
24.02.2020 | Max-Planck-Institut für Struktur und Dynamik der Materie

nachricht Nanopartikel gezielt zum Tumor lenken: HZDR-Forscher spüren Krebszellen mit maßgeschneiderten Materialien auf
24.02.2020 | Helmholtz-Zentrum Dresden-Rossendorf

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Loopings der Bakterien: Forschungsteam mit Beteiligung der Universität Göttingen analysiert Fortbewegung

Das magnetotaktische Bakterium Magnetococcus marinus schwimmt mit Hilfe von zwei Bündeln von Geißeln. Außerdem besitzen die Bakterienzellen eine Art intrazelluläre Kompassnadel und können daher mit einem Magnetfeld gesteuert werden. Sie werden deshalb als biologisches Modell für Mikroroboter benutzt. Ein internationales Team der Universität Göttingen, des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung in Potsdam und der CEA Cadarache (Frankreich) hat nun aufgeklärt, wie sich diese Bakterien bewegen und deren Schwimmgeschwindigkeit bestimmt. Die Ergebnisse sind in der Fachzeitschrift eLife erschienen.

Die Forscherinnen und Forscher nutzten eine Kombination von neuen experimentellen Methoden und Computersimulationen: Sie verfolgten die Bewegung der...

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Schiffsexpedition bringt Licht ins Innere der Erde

24.02.2020 | Geowissenschaften

Elektronenbeugung zeigt winzige Kristalle in neuem Licht

24.02.2020 | Biowissenschaften Chemie

Antikörper als Therapiealternative bei Tumoren am Hör- und Gleichgewichtsnerv?

24.02.2020 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics