Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Zellen

10.11.2005


Poröse Kapseln aus Molybdänoxid können als Modell für biologische Ionentransportprozesse dienen.



Müssen Zellen immer aus organischen Kohlenstoffverbindungen aufgebaut sein? Wenn findige Wissenschaftler ihre Phantasie bemühen, finden sie rasch eine Antwort auf diese Frage. Das zeigen Arbeiten von Achim Müller aus Bielefeld und seinen Mitarbeitern. Sie konstruierten eine "künstliche Zelle" aus einem anorganischen Riesenmolekül: einem kugelförmigen Polyoxymolybdatcluster. 20 ringförmige Öffnungen, die von einer alternierenden Folge von je neun Molybdän- und neun Sauerstoffatomen umschlossen wurden, bildeten die Poren der künstlichen Zellmembran. An der Innenseite waren zweifach negativ geladene Sulfatgruppen kovalent gebunden, die für eine deutliche negative Ladung der Kapseloberfläche sorgten. Im Innern der Kugel befanden sich Wassermoleküle. Jede Pore war durch einen "Stöpsel" aus einem Harnstoffmolekül verschlossen, der über schwache, nicht kovalente Wechselwirkungen an den Mo9O9-Ring angelagert war.

... mehr zu:
»Ca2+-Ionen »Kapsel »Poren »Zelle »Zellmembran


Typisch für biologische Signalprozesse in lebenden Zellen, ist ein kontrollierter Ionenfluss durch spezielle Kanalproteine in der Zellmembran. Diese können durch die Bindung eines geeigneten Liganden gesteuert werden oder über das elektrochemische Potential an der Zellmembran, letztendlich also durch Konzentrationsunterschiede von Ionen innerhalb und außerhalb der Zelle. Bei einer Vielzahl von biologischen Funktionen spielen Calciumionen (Ca2+) eine wichtige Rolle. Aus diesem Grunde wählten Müller et al. Ca 2+ für ihre weiteren Experimente aus. Sie versetzten wässrige Lösungen der Molybdatkapseln mit Ca2+-Ionen und untersuchten die entstehenden Kristalle mithilfe der Röntgenstrukturanalyse. Dabei stellte sich heraus, dass nicht einfach Calciumionen in die Kapsel eingewandert waren, auch die Harnstoffstöpsel befanden sich wieder auf ihren Plätzen in den Mo9O9 -Poren.

Dieses Verhalten der künstlichen Zelle zeigt Parallelen zu den Vorgängen, die sich an einem spannungsgesteuerten Ionenkanal in einer lebenden Zelle abspielen: Im Ausgangszustand sind die Poren geschlossen. Werden nun Ca2+-Ionen im Überschuss zugegeben, so gleichen die positiven Ca2+-Ionen die negativen Ladungen der Kugeloberfläche aus. Dadurch ändert sich der elektrochemische Gradient an der künstlichen Zellmembran. Die Deckel der Poren öffnen sich und Ca 2+-Ionen können in die Kapsel eindringen. Möglicherweise verändert dies erneut die Ladungsverteilung an der künstlichen Zellmembran und die Poren schließen sich wieder.

Autor: Achim Müller, Universität Bielefeld (Germany), http://www.uni-bielefeld.de/chemie/ac1/index.htm

Angewandte Chemie: Presseinfo 45/2005

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.gdch.de
http://www.uni-bielefeld.de/chemie/ac1/index.htm
http://presse.angewandte.de

Weitere Berichte zu: Ca2+-Ionen Kapsel Poren Zelle Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Signale aus der Pflanzenzelle
14.06.2019 | Julius-Maximilians-Universität Würzburg

nachricht Wie Antibiotikaresistenzen dank egoistischer genetischer Elemente überdauern
13.06.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Im Focus: Schwerefeldbestimmung der Erde so genau wie noch nie

Forschende der TU Graz berechneten aus 1,16 Milliarden Satellitendaten das bislang genaueste Schwerefeldmodell der Erde. Es liefert wertvolles Wissen für die Klimaforschung.

Die Erdanziehungskraft schwankt von Ort zu Ort. Dieses Phänomen nutzen Geodäsie-Fachleute, um geodynamische und klimatologische Prozesse zu beobachten....

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

Künstliche Intelligenz in der Materialmikroskopie

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

German Innovation Award für Rittal VX25 Schaltschranksystem

14.06.2019 | Förderungen Preise

Fraunhofer SCAI und Uni Bonn zeigen innovative Anwendungen und Software für das High Performance Computing

14.06.2019 | Messenachrichten

Autonomes Premiumtaxi sofort oder warten auf den selbstfahrenden Minibus?

14.06.2019 | Interdisziplinäre Forschung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics