Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Künstliche Zellen

10.11.2005


Poröse Kapseln aus Molybdänoxid können als Modell für biologische Ionentransportprozesse dienen.



Müssen Zellen immer aus organischen Kohlenstoffverbindungen aufgebaut sein? Wenn findige Wissenschaftler ihre Phantasie bemühen, finden sie rasch eine Antwort auf diese Frage. Das zeigen Arbeiten von Achim Müller aus Bielefeld und seinen Mitarbeitern. Sie konstruierten eine "künstliche Zelle" aus einem anorganischen Riesenmolekül: einem kugelförmigen Polyoxymolybdatcluster. 20 ringförmige Öffnungen, die von einer alternierenden Folge von je neun Molybdän- und neun Sauerstoffatomen umschlossen wurden, bildeten die Poren der künstlichen Zellmembran. An der Innenseite waren zweifach negativ geladene Sulfatgruppen kovalent gebunden, die für eine deutliche negative Ladung der Kapseloberfläche sorgten. Im Innern der Kugel befanden sich Wassermoleküle. Jede Pore war durch einen "Stöpsel" aus einem Harnstoffmolekül verschlossen, der über schwache, nicht kovalente Wechselwirkungen an den Mo9O9-Ring angelagert war.

... mehr zu:
»Ca2+-Ionen »Kapsel »Poren »Zelle »Zellmembran


Typisch für biologische Signalprozesse in lebenden Zellen, ist ein kontrollierter Ionenfluss durch spezielle Kanalproteine in der Zellmembran. Diese können durch die Bindung eines geeigneten Liganden gesteuert werden oder über das elektrochemische Potential an der Zellmembran, letztendlich also durch Konzentrationsunterschiede von Ionen innerhalb und außerhalb der Zelle. Bei einer Vielzahl von biologischen Funktionen spielen Calciumionen (Ca2+) eine wichtige Rolle. Aus diesem Grunde wählten Müller et al. Ca 2+ für ihre weiteren Experimente aus. Sie versetzten wässrige Lösungen der Molybdatkapseln mit Ca2+-Ionen und untersuchten die entstehenden Kristalle mithilfe der Röntgenstrukturanalyse. Dabei stellte sich heraus, dass nicht einfach Calciumionen in die Kapsel eingewandert waren, auch die Harnstoffstöpsel befanden sich wieder auf ihren Plätzen in den Mo9O9 -Poren.

Dieses Verhalten der künstlichen Zelle zeigt Parallelen zu den Vorgängen, die sich an einem spannungsgesteuerten Ionenkanal in einer lebenden Zelle abspielen: Im Ausgangszustand sind die Poren geschlossen. Werden nun Ca2+-Ionen im Überschuss zugegeben, so gleichen die positiven Ca2+-Ionen die negativen Ladungen der Kugeloberfläche aus. Dadurch ändert sich der elektrochemische Gradient an der künstlichen Zellmembran. Die Deckel der Poren öffnen sich und Ca 2+-Ionen können in die Kapsel eindringen. Möglicherweise verändert dies erneut die Ladungsverteilung an der künstlichen Zellmembran und die Poren schließen sich wieder.

Autor: Achim Müller, Universität Bielefeld (Germany), http://www.uni-bielefeld.de/chemie/ac1/index.htm

Angewandte Chemie: Presseinfo 45/2005

Angewandte Chemie, Postfach 101161, 69495 Weinheim, Germany

Dr. Renate Hoer | idw
Weitere Informationen:
http://www.gdch.de
http://www.uni-bielefeld.de/chemie/ac1/index.htm
http://presse.angewandte.de

Weitere Berichte zu: Ca2+-Ionen Kapsel Poren Zelle Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Goldkugel im goldenen Käfig
21.03.2019 | Gesellschaft Deutscher Chemiker e.V.

nachricht Wichtiger Mechanismus der Antigenpräsentation in Wächterzellen des Immunsystems enträtselt
21.03.2019 | Helmholtz-Zentrum für Infektionsforschung

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Im Focus: Wichtiger Mechanismus der Antigenpräsentation in Wächterzellen des Immunsystems enträtselt

TWINCORE-Forscher entschlüsseln, wie der Transport von Antigenfragmenten auf die Oberfläche von Immunzellen des Menschen reguliert wird

Dendritische Zellen sind die Wächter unserer Immunabwehr. Sie lauern fremden Eindringlingen auf, schlucken sie, zerlegen sie in Bruchstücke und präsentieren...

Im Focus: Selbstheilender Lack aus Maisstärke lässt kleine Kratzer durch Wärme verschwinden

Ein neuer Lack aus Maisstärke ist wegen der besonderen Anordnung seiner Moleküle in der Lage, durch Wärme kleine Kratzer von selbst zu reparieren: Die Vernetzung über ringförmige Moleküle macht das Material beweglich, sodass es die Kratzer ausgleicht und diese wieder verschwinden.

Oberflächliche Mikrokratzer in der Autokarosserie oder auf anderen Hochglanzoberflächen sind harmlos, aber ärgerlich. Gerade im Luxussegment zeichnen sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Magnetische Mikroboote

21.03.2019 | Physik Astronomie

Protein BRCA1 als Stress-Coach

21.03.2019 | Biowissenschaften Chemie

Möglicher Ur-Stoffwechsel in Bakterien entdeckt

21.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics