Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Tanz der Wassermoleküle in Proteinen in Echtzeit aufgelöst

10.11.2005


Neuer Ansatz ermöglicht bewegte Bilder der Proteinfunktion - RUB-Biophysiker berichten in NATURE


Blick in das aktive Zentrum des Proteins mit der exakten Anordnung der Wassermoleküle. Angezeigt sind die Protonentransferreaktionen
Garzcarek/Gerwert, NATURE



Schon die antiken Griechen ahnten: Wasser ist der Quell des Lebens. Dieser Ahnung gingen die RUB-Biophysiker Dr. Florian Garzcarek und Prof. Dr. Klaus Gerwert in der Nano-Welt der Proteine, den Bausteinen des Lebens, auf den Grund: Sie konnten erstmals zeigen, wie ein Membranprotein gezielt das Zusammenspiel einzelner Wassermoleküle nutzt, um seine Arbeit zu verrichten, nämlich von der Sonne angetrieben Protonen gegen einen äußeren Widerstand zu pumpen. Entgegen der herrschenden Lehrmeinung können Wassermoleküle genau wie Aminosäuren Funktionen in einem Protein übernehmen. "Die katalytische Funktion der Proteine ist essentiell für die Regulierung biologischer Prozesse, und proteingebundenes Wasser spielt dabei eine zentrale Rolle", erklärt Prof. Gerwert. Diese Ergebnisse sind bereits vor dem Druck in der online-Ausgabe von NATURE veroeffentlicht.

... mehr zu:
»Protein »Wassermoleküle


Die "Arme" sind wichtig

So wie bei einem tanzenden Paar die Bewegungen der Arme eine zentrale Rolle spielen, sind die Interaktionen der beiden an dem zentralen Sauerstoff (O) gebundenen Wasserstoffarme (H) wichtig für die Funktion der Wassermoleküle (H2O) im Protein. Ein im Labor von Prof. Gerwert entwickelter, vibrationsspektroskopischer Ansatz erlaubte es den Forschern nun erstmals, die Wasserstoffe einzelner proteingebundener Wasser und ihre vielfältigen Interaktionen während der Katalyse eines Membranproteins in Echtzeit aufzulösen. "Bisher konnte in den Proteinstrukturen nur die Position der Sauerstoffatome des proteingebundenen Wassers aufgelöst werden, nicht aber die der Wasserstoffe und insbesondere nicht deren Dynamik", erläutert Prof. Gerwert. Ohne Kenntnis über die Position und Dynamik der Arme konnte den Wassermolekülen bisher auch keine Funktion zugeordnet werden. "Die Ergebnisse unserer Untersuchungen stellen einen Paradigmenwechsel in der Bedeutung der proteingebundenen Wassermoleküle für die Funktion von Proteinen dar", so Gerwert.

Fortschritt in der Entwicklung medizinischer Wirkstoffe

Auswirkungen könnte die neue Untersuchungsmethode etwa auf die Entwicklung neuer Medikamente haben: Die Rolle der Wassermoleküle wird z.B. in den Modelling Verfahren der Pharmaindustrie, in denen neue Wirkstoffe entwickelt werden, bisher gar nicht oder nur sehr rudimentär berücksichtigt. "Kann man die Rolle Protein-gebundener Wasser in solche Verfahren mit einbeziehen, sollte dies einen erheblichen Fortschritt bei der Entwicklung von neuen Wirkstoffen auslösen", schätzt Prof. Gerwert. Die Vibrationsspektroskopie könne zu einer Schlüsseltechnik im Bereich der System-Biologie werden, da sie die Dynamik der Proteine und ihre Interaktionen in Proteinnetzwerken auflösen kann. Die aktuellen Ergebnisse schlagen darüber hinaus eine Brücke von der Welt der Physiko-Chemiker zu der Welt der Biochemiker: Es zeigt sich, dass die in den physiko-chemischen Systemen entdeckten Eigenschaften der Wasser geschickt von einem Protein genutzt werden, um seine biologische Funktion optimal zu realisieren.

Hintergrund: Bisher nur Standbilder

Die Biowissenschaftler versuchen, ausgehend von Fragestellungen auf der phänomenologischen Ebene, die Prozesse auf der zellulären und schließlich auf der molekularen Ebene zu verstehen. Das ist eine wesentliche Voraussetzung dafür, gezielter in patho-physiologische Prozesse eingreifen zu können. Auf der molekularen Ebene rücken im "postgenomen" Zeitalter funktionstragende Proteine in den Fokus der Forscher. Mit der Röntgenstrukturanalyse kann man ihre dreidimensionale Struktur bestimmen. Um allerdings die Funktion zu verstehen, benötigt man weiterführende Methoden, die eine echte atomare Auflösung liefern. Die Röntgenstrukturanalyse löst in der Regel die Wasserstoffatome nicht auf und liefert den eingefrorenen Grundzustand der Proteine, die Reaktionen der Schlüsselgruppen werden dagegen nicht aufgelöst. "Diese klassischen Methoden liefern bildlich gesprochen einen Schnappschuss von einem kalten Motor, aber nicht aber einen ganzen Film, der den laufenden Motor mit seinen vielen fein aufeinander abgestimmten Bauteilen in Aktion zeigt", so Gerwert. "Für das Verständnis des Zusammenspiels der einzelnen Proteine in den komplexen Signaltransduktions-Netzwerken der Zelle ist aber ueber die Struktur hinaus die Bestimmung der Dynamik der Proteine und ihrer Interaktionen wesentlich." Kommt es zu Störungen in den Signalwegen, beginnt die Zelle unkontrolliert zu wachsen und es bilden sich Krankheiten wie Krebs aus.

Titelaufnahme

Florian Garczarek &Klaus Gerwert: Functional waters in intraprotein proton transfer monitored by FTIR difference spectroscopy. In: Nature; DOI: 10.1038/nature04231

Weitere Informationen

Prof. Dr. Klaus Gerwert, Lehrstuhl für Biophysik der Ruhr-Universität Bochum, 44780 Bochum, ND 04/596, Tel. 0234/32-24461, Fax: 0234/32-14238, E-Mail: gerwert@bph.rub.de

Dr. Josef König | idw
Weitere Informationen:
http://www.pm.ruhr-uni-bochum.de/pm2005/msg00081.htm

Weitere Berichte zu: Protein Wassermoleküle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Katalysatoren - Fluktuationen machen den Weg frei
15.02.2019 | Ludwig-Maximilians-Universität München

nachricht Leipziger Forscher entwickeln neue Methode zur Entschlüsselung chemischer Reaktionen
15.02.2019 | Universität Leipzig

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Grüne Spintronik: Mit Spannung Superferromagnetismus erzeugen

Ein HZB-Team hat zusammen mit internationalen Partnern an der Lichtquelle BESSY II ein neues Phänomen in Eisen-Nanokörnern auf einem ferroelektrischen Substrat beobachtet: Die magnetischen Momente der Eisenkörner richten sich superferromagnetisch aus, sobald eine elektrische Spannung anliegt. Der Effekt funktioniert bei Raumtemperatur und könnte zu neuen Materialien für IT-Bauelemente und Datenspeicher führen, die weniger Energie verbrauchen.

In heutigen Datenspeichern müssen magnetische Domänen mit Hilfe eines externen Magnetfeld umgeschaltet werden, welches durch elektrischen Strom erzeugt wird....

Im Focus: Regensburger Physiker beobachten, wie es sich Elektronen gemütlich machen

Und können dadurch mit ihrer neu entwickelten Mikroskopiemethode Orbitale einzelner Moleküle in verschiedenen Ladungszuständen abbilden. Die internationale Forschergruppe der Universität Regensburg berichtet über ihre Ergebnisse unter dem Titel “Mapping orbital changes upon electron transfer with tunnelling microscopy on insulators” in der weltweit angesehenen Fachzeitschrift ,,Nature‘‘.

Sie sind die Grundbausteine der uns umgebenden Materie - Atome und Moleküle. Die Eigenschaften der Materie sind oftmals jedoch nicht durch diese Bausteine...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: Universität Konstanz gewinnt neue Erkenntnisse über die Entwicklung des Immunsystems

Wissenschaftler der Universität Konstanz identifizieren Wettstreit zwischen menschlichem Immunsystem und bakteriellen Krankheitserregern

Zellbiologen der Universität Konstanz publizieren in der Fachzeitschrift „Current Biology“ neue Erkenntnisse über die rasante evolutionäre Anpassung des...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz zum Thema Desinformation in Online-Medien

15.02.2019 | Veranstaltungen

FfE-Energietage 2019 - Die Energiewelt heute und morgen vom 1. bis 4. April 2019 in München

15.02.2019 | Veranstaltungen

Deutscher Fachkongress für kommunales Energiemanagement: Fokus Energie – Architektur – BauKultur

13.02.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Katalysatoren - Fluktuationen machen den Weg frei

15.02.2019 | Biowissenschaften Chemie

Berührungsgeschützt, kompakt, einfach: Rittal erweitert Board-Technologie

15.02.2019 | Energie und Elektrotechnik

Wie kann digitales Lernen gelingen? Lern-Prototypen werden auf der didacta vorgestellt

15.02.2019 | Bildung Wissenschaft

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics