Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nimm zwei!

20.10.2005


Die Protein-Kinase STN8 befindet sich in den Chloroplasten des Blattes. Mit Hilfe der konfokalen Lasermikroskopie erkennt man auf dem linken Bild das rot leuchtende Marker-Protein und in der Mitte ist die Autofluoreszenz der Chloroplasten (grün) dargestellt. Rechts sind beide Bilder fotomontiert. Bild: Max-Planck-Institut für Züchtungsforschung


Kölner Max-Planck-Forscher haben herausgefunden, wie Protein-Kinasen in Pflanzen die Anpassung an andere Lichtbedingungen steuern


Das gesamte Leben auf der Erde hängt von der Photosynthese ab, jenem Prozess, bei dem Lichtenergie für den Aufbau organischer Substanzen genutzt wird. Wenn sich die Lichtverhältnisse ändern, muss sich die Pflanze darauf einstellen und anpassen, wobei man drei unterschiedliche Arten der Anpassung unterscheidet. Die Pflanze dreht dabei an den Knöpfen der Photosynthese-Maschinerie und verändert wichtige "Protein-Zahnräder". Max-Planck-Wissenschaftler beschreiben jetzt in der Fachzeitschrift Nature (Nature, 20. Oktober 2005), wie zwei Protein-Kinasen, also Enzyme, die Phosphat-Gruppen an andere Proteine anhängen, die verschiedenen Anpassungen des Photosynthese-Apparats steuern und damit der Pflanze ermöglichen, sich besser an veränderte Lichtbedingungen anzupassen.

Die Photosynthese ist ein recht komplexer Prozess, ohne den Leben auf der Erde nur schwer oder nur für exotische Mikroorganismen möglich wäre. Man benötigt zwei Moleküle: Kohlendioxid und Wasser. Von beiden gibt es riesige Mengen. Die Pflanze schickt diese beiden Komponenten durch die Photosynthese-Maschinerie, dort werden beide Komponenten verbunden und Zuckermoleküle synthetisiert. Von diesen süßen Energielieferanten ernährt sich die Pflanze und indirekt alle anderen Lebewesen.


Für die Anpassung der Photosynthese an andere Lichtverhältnisse gibt es drei Mechanismen: 1. die kurzfristige Anpassung, bei der die Licht sammelnden Antennen innerhalb von Minuten umgebaut werden, 2. die langfristige Anpassung, bei der die Zusammensetzung und das Verhältnis der Photosystem zueinander innerhalb von Tagen verändert wird, und 3. die Phosphorylierung bestimmter Proteine des Photosystem II, von der man bisher annahm, dass dies für den Austausch defekter Photosyntheseproteine erforderlich ist.

Ein kleiner molekularer Helfer, die Protein-Kinase STN7, ist für die erste und zweite Form der Anpassung zuständig, und eine verwandte Kinase, STN8, für die dritte Art der Anpassung. Während die Funktion von STN7 bei der ersten Form der Anpassung bereits bekannt war, konnte das Forscherteam aus Köln und München mit Unterstützung aus Jena und Düsseldorf zeigen, dass STN7 auch für die zweite Form der Anpassung erforderlich ist und die Rolle des Enzyms STN8 bei der dritten Art der Anpassung aufklären. Das Team um Dario Leister vom Max-Planck-Institut für Züchtungsforschung in Köln hat damit einen Meilenstein in der Erforschung der Anpassung des Photosynthese-Mechanismus an veränderte Lichtbedingungen gesetzt.

STN8 verändert das Herz des Photosystems II, indem es dort Proteine phosphoryliert. Diese Phosphorylierung wurde für lange Zeit als entscheidend beim Austausch defekter Proteine des Photosystem II angesehen. Die Forscher konnten jedoch zeigen, dass die Phosphorylierung von Proteinen des Photosystems II nicht Maß gebend für deren Austausch ist. Damit stellt sich jetzt die Frage, wofür diese Phosphorylierung überhaupt benötigt wird. Dieser sowie der Frage, wie die STN7-Kinase die kurz- und langfristige Anpassung der Photosynthese koordiniert, wollen die Forscher in Zukunft nachgehen. Erste Anhaltspunkte konnten sie in der Nature-Publikation bereits liefern: Die Phosphorylierung bestimmter photosynthetischer Proteine scheint für die Regulation spezieller Gene im Chloroplasten und im Zellkern Maß gebend zu sein.

Weitere Informationen erhalten Sie von:

Prof. Dr. Dario Leister
Botanisches Institut, Ludwig-Maximilians-Universität, München
Tel.: 089 17861-200/201
Fax: 089 171683
E-Mail: leister@lrz.uni-muenchen.de

Dipl.-Biol. Claudia Lorenz (Presse- und Öffentlichkeitsarbeit)
Max-Planck-Institut für Züchtungsforschung, Köln
Tel.: 0221 5062-672
Fax: 0221 5062-674

Prof. Dr. Dario Leister | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de
http://www.uni-muenchen.de
http://www.mpiz-koeln.mpg.de

Weitere Berichte zu: Pflanze Phosphorylierung Photosynthese Photosystem Protein

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

nachricht Einbahnstraße für das Salz
21.09.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Tiefseebergbau: Forschung zu Risiken und ökologischen Folgen geht weiter

21.09.2018 | Geowissenschaften

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungsnachrichten

Optimierungspotenziale bei Kaminöfen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics