Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Reaktionsfronten auf atomarer Skala sichtbar gemacht

03.09.2001

Forscher am Fritz-Haber-Institut entdecken: Bisherige Modelle molekularer Prozesse müssen korrigiert werden

Wissenschaftler des Berliner Fritz-Haber-Instituts der Max-Planck-Gesellschaft haben erstmals die atomaren Vorgänge sichtbar gemacht, die auf der Oberfläche eines Katalysators so genannte chemische Reaktionsfronten entstehen lassen (Science, 31. August 2001). Dieser Erfolg gelang dem Forscherteam um Christian Sachs und Joost Wintterlin aus der von Prof. Gerhard Ertl geleiteten Abteilung "Physikalische Chemie".

Gewöhnlich laufen chemische Prozesse gleichmäßig ab, das heißt: In dem gesamten Raum, in dem sie stattfinden, ist die Stoffumwandlung etwa im selben Moment beendet. Manche Reaktionen nehmen jedoch einen anderen Verlauf: Sie "zünden" an einer Stelle und breiten sich dann frontartig aus. Solche Phänomene sind zwar schon länger aus der Chemie bekannt und lassen sich auch recht gut mit theoretischen Modellen erklären. Bisher wussten die Forscher allerdings nicht, ob die einfachen Vorstellungen, so genannte Reaktions-Diffusions-Modelle, die Vorgänge auch auf atomarer Ebene korrekt beschreiben.

Mithilfe eines Rastertunnelmikroskops haben Wissenschaftler des Fritz-Haber-Instituts die molekularen Prozesse in einer Reaktionsfront jetzt erstmals direkt sichtbar gemacht. Dabei stellte sich heraus, dass man die Konzepte einfacher Reaktions-Diffusions-Modelle nicht auf den kleinen Maßstab von Atomen und Molekülen übertragen kann. Vor allem müssen künftig die Wechselwirkungen zwischen den reagierenden Partnern berücksichtigt werden, damit man die Eigenschaften der Fronten - zum Beispiel ihre Geschwindigkeit - genau berechnen kann.

Frontartige Ausbreitungen sind nicht nur aus der Chemie, sondern auch aus anderen Bereichen der Natur und sogar bei sozialen Vorgängen bekannt: Waldbrände etwa zeigen ein ähnliches Verhalten. Weitere Beispiele sind die Pestepidemien im Mittelalter oder die Einführung des Ackerbaus in Europa in der Jungsteinzeit. Sie beginnen in einem lokal begrenzten Gebiet und breiten sich frontartig aus. Mathematisch lassen sich all diese Vorgänge ähnlich beschreiben. Bei chemischen Reaktionen, an denen meistens nur relativ einfach gebaute, einheitliche Moleküle beteiligt sind, scheinen die zugrunde liegenden Prozesse besonders leicht verständlich zu sein. Die Reaktion beginnt irgendwo und bildet lokal eine kleine Menge Reaktionsprodukt. Bei bestimmten chemischen Prozessen nimmt jedoch das entstehende Produkt selbst wieder an der Stoffumsetzung teil und beschleunigt sie dadurch. Einmal gestartet, wird der Ablauf daher immer schneller, und die Menge der erzeugten Substanz nimmt in diesem Bereich stark zu. Gleichzeitig beginnt das zunächst räumlich konzentrierte Produkt durch Diffusion auseinander zu laufen und sich in seiner Umgebung auszubreiten. Hier startet es erneut die Reaktion, die sich weiter fortsetzt. Diese Vorgänge wiederholen sich ständig - das entspricht der Ausbreitung einer Front. Die Geschwindigkeit, mit der sich die Front bewegt, kann dabei viel größer sein als die Diffusionsgeschwindigkeit. Mit einfachen theoretischen Modellen, die nur die Reaktion und die Diffusion berücksichtigen (daher der Name Reaktions-Diffusions-Modell) lässt sich dieses Verhalten im Prinzip erfassen. Dennoch gibt es Hinweise, dass diese Beschreibung zu einfach ist.

Wissenschaftler des Fritz-Haber-Instituts um Christian Sachs und Joost Wintterlin aus der Abteilung von Prof. Gerhard Ertl haben gefunden, dass bei der katalytischen Oxidation von Wasserstoff bei tiefen Temperaturen Fronten entstehen können. Die Reaktion zwischen Wasserstoff und Sauerstoff findet dabei auf der als Katalysator wirkenden Platinoberfläche statt; als Produkt entsteht Wasser. Die Messungen fanden im Ultrahochvakuum mit einem Rastertunnelmikroskop statt - ein Verfahren, das Abbildungen von Atomen und Molekülen auf Oberflächen liefert. Mit dieser Technik ist es jetzt gelungen, solche chemischen Reaktionsfronten sichtbar zu machen; bei diesen Reaktionen haben sie typische Breiten von 10 bis 100 Nanometern (= Millionstel Millimeter).

Die Berliner Forscher haben außerdem beobachtet, dass als Zwischenprodukt OH-Moleküle auf der Platinoberfläche entstehen, die sich dann mit Wasserstoffatomen zu Wasser (H2O) vereinen. Dieses Wasser reagiert aber weiter und setzt mit noch vorhandenen Sauerstoffatomen wieder OH frei. Dadurch wächst lokal die Menge an OH, sodass OH und in der Folge H2O immer schneller erzeugt werden. Wasser kann auf der Platinoberfläche diffundieren und diesen Prozess somit auch in der Umgebung auslösen. Als Ergebnis breitet sich eine Reaktionsfront aus, wobei das Zwischenprodukt OH sich in der Front anreichert.

Nachdem es nun gelungen ist, auf atomarer Skala die in den Fronten reagierenden Atome und Moleküle sichtbar zu machen, zeigen sich viel kompliziertere Prozesse, als die Reaktions-Diffusions-Modelle angenommen haben. Zwar reagieren und diffundieren die chemischen Partner tatsächlich - aber nicht unabhängig voneinander. Die OH- und H2O-Moleküle zeigen starke Wechselwirkungen, zum Beispiel bilden sich durch anziehende Kräfte zwischen den Teilchen kleine Inseln aus. Damit lässt sich erklären, warum die experimentell gemessenen Geschwindigkeiten und Profile der Fronten nicht mit den theoretisch vorhergesagten Werten übereinstimmen. Die Wissenschaftler hoffen nun, dass sich mit diesen Befunden bessere theoretische Modelle entwickeln lassen, die sich dann auch auf andere Beispiele dieses weit verbreiteten Phänomens übertragen lassen.

Viola Kirchner

Viola Kirchner | Presseinformation
Weitere Informationen:
http://www.mpg.de/index.html
http://www.fhi-berlin.mpg.de/

Weitere Berichte zu: Molekül Reaktions-Diffusions-Modell Reaktionsfront

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht HD-Mikroskopie in Millisekunden
20.09.2019 | Universität Bielefeld

nachricht Alpenflora im Klimawandel: Pflanzen reagieren mit "Verspätung"
20.09.2019 | Universität Wien

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics