Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

"Stop and Go" im Nervensystem

05.07.2005


Zwei-Photonen-Echtzeit-Aufnahmen von grün fluoreszierenden aktivierten T-Zellen in Rückenmarksschnitten. Die Zellen ändern ihre Gestalt und bewegen sich mit hoher Geschwindigkeit durch das Nervengewebe. Die Zahlen in der linken oberen Ecke des Bildes geben den Beobachtungszeitraum in Minuten an. Die Umrisse und gestrichelte Linien bezeichnen die Gestalt, den Ort und die Bewegungsrichtung der Zelle im vorherigen Beobachtungsbild. Bild: Max-Planck-Institut für Neurobiologie


Zwei-Photonen-Echtzeit-Aufnahme von grün fluoreszierenden aktivierten T-Zellen in Rückenmarksschnitten. Die Lymphozyten ändern ihre Gestalt nicht und bleiben im Nervengewebe fest verankert. Die Zahlen in der linken oberen Ecke des Bildes geben die Beobachtungszeit in Minuten an. Die Umrisse und gestrichelte Linien geben die Gestalt, den Ort und die Bewegungsrichtung der Zelle im vorherigen Beobachtungsbild an. Bild: Max-Planck-Institut für Neurobiologie


Max-Planck-Wissenschaftler entdecken, wie autoimmune T-Lymphozyten das Gehirn attackieren


Wissenschaftler des Max-Planck-Instituts für Neurobiologie erforschen Krankheitsmechanismen der Multiplen Sklerose, eine der häufigsten Autoimmunerkrankungen des Menschen. Bei dieser Erkrankung spielt die Invasion autoaggressiver T-Zellen in das Nervensystem eine entscheidende Rolle. Im Tiermodell der Multiplen Sklerose konnten die Neuroimmunologen jetzt das Verhalten dieser autoaggressiven T-Zellen im lebenden Hirngewebe mittels modernster Mikroskopieverfahren live verfolgen und charakterisieren. Die im Journal of Experimental Medicine (Juni 2005) veröffentlichten Ergebnisse sind wesentlich für das Verständnis der Multiplen Sklerose und können die Entwicklung neuer therapeutischer Ansätze fördern.

Die Multiple Sklerose (MS) ist hierzulande die maßgeblichste entzündliche Erkrankung des Zentralnervensystems (ZNS). Sie ist gefürchtet wegen ihrer zahlreichen und vielfältigen neurologischen Ausfälle, wie z.B. Lähmungen, Gefühls- und Gleichgewichtsstörungen. Verursacht werden diese Schäden nach derzeitigem Stand der Forschung durch zahlreiche, im Gehirn und Rückenmark verstreute Entzündungsherde. T-Lymphozyten, die darauf spezialisiert sind, die körpereigene Hirnsubstanz zu attackieren und zu zerstören, machen einen wesentlichen Teil der Entzündungszellen in diesen Herden aus. Allerdings ist nicht geklärt, wie diese autoaggressiven Zellen in das Hirngewebe gelangen. Das Gehirn nimmt nämlich aus immunologischer Sicht eine Sonderstellung ein: T-Zellen, die durch die anderen Körpergewebe streifen, um Eindringlinge aufzuspüren, haben keinen freien Zutritt in das Nervensystem. Die Frage, wie sich autoaggressive T-Zellen Zutritt zum Gehirn verschaffen, ist anhand menschlichen Hirngewebes nicht zu beantworten, wohl aber durch Studien in Tiermodellen.


Die experimentelle autoimmune Enzephalomyelitis (EAE) bietet sich als besonders geeignetes Modell für autoaggressive Hirnentzündungen an, da sie nicht durch von außen eindringende Mikroben ausgelöst wird, sondern von körpereigenen autoimmunen T-Zellen. Die Übertragung dieser Zellen in gesunde Empfängertiere führt zu Entzündungsherden, die denen der Multiplen Sklerose stark ähneln. Die Forscher in Martinsried haben ein Verfahren entwickelt, um krankheitserzeugende autoaggressive T-Zellen durch Genmanipulation so zu verändern, dass sie sichtbar werden - sie fluoreszieren. In ein gesundes Empfängertier übertragen, können sie aufgrund ihrer Eigenfluoreszenz zu jedem Zeitpunkt in jedem Gewebe nachgewiesen werden.

Die ersten Studien dieser fluoreszierenden T-Zellen zeigten, dass autoaggressive T-Zellen keineswegs - wie erwartet - direkt nach ihrer Übertragung in das Hirngewebe eindringen. Tatsächlich wandern sie auf einer komplizierten, streng vorgegebenen Route über mehrere Tage durch die peripheren Immunorgane (Lymphknoten, Milz) und erwerben auf diesem Weg die Fähigkeit, in das Zentrale Nervensystem einzudringen. Erst danach öffnen sich die Schleusen des Gehirns: Innerhalb von Stunden strömen Millionen autoaggressiver T-Zellen aus der Peripherie in das ZNS ein. Zeitgleich mit dieser Flut von Zellen kommt es zum Auftreten schwerer Lähmungen.

Um die Bewegung der autoaggressiven T-Zellen in das Gehirn und innerhalb des Hirngewebes in Echtzeit zu verfolgen, setzten die Martinsrieder Neurobiologen modernste optische Verfahren (Zwei-Photonen-Mikroskopie) ein und stellten dabei fest, dass autoaggressive T-Zellen im Hirngewebe zwei grundlegend verschiedenen Bewegungsmustern folgen: Die Mehrheit der Zellen bewegt sich mit einem für wandernde Zellen enormen Tempo von bis zu 25 Mikrometern pro Minute durch das Gewebe. Dieses Tempo ist um so bemerkenswerter, als das Nervengewebe ein vergleichsweise festes und kompaktes Gewebe darstellt. Die schnell wandernden T-Zellen durchziehen das Nervengewebe offenbar völlig ungerichtet und scheinen keinem Lockstoffgradienten, so genannten Chemokinen, zu folgen. Die Bewegung erfolgt in Wellen, d.h. die Zellen durchlaufen Phasen schneller Bewegungsaktivität, abgelöst von Phasen eines relativen Stillstands.

Eine kleinere Gruppe von T-Zellen scheint jedoch dauerhaft an Ort und Stelle zu verharren. Sie sind an einem Pol der Zellmembran fixiert, um den herum die Zellkörper heftig schwingen (Abb.2). Diese angedockten T-Zellen bilden spezialisierte Verbindungen, die aufgrund ihrer geordneten Struktur analog zu Nervenzellkontakten im Gehirn als immunologische "Synapsen" bezeichnet werden. Diese "Synapsen" befinden sich genau an den Fixpunkten der T-Zellen und bestehen aus dem zentral angeordneten T-Zellrezeptor, umgeben von Ankermolekülen, so genannten "Integrinen". Die Antigen-Erkennung von T-Zellen erfolgt über die Synapsen und manifestiert sich in der Freisetzung von Entzündungsstoffen, so genannten Cytokinen. Die zwei Bewegungsmuster der autoaggressiven T-Zellen im Gehirn legen folgende Interpretationen nahe: Die schnell durch die Hirnsubstanz kreuzenden autoaggressiven T-Zellen sind "auf der Suche" nach Zellen, die ihr passendes Antigen präsentieren. Die angedockten T-Zellen haben dagegen ihr Ziel erreicht und befinden sich im Prozeß der Antigen-Erkennung.

Obwohl es gesichert ist, dass in der autoimmunen Enzephalomyelitis die autoaggressiven T-Zellen für die Schäden im Gehirn verantwortlich sind, sind die Mechanismen, die diese Veränderungen verursachen, weitgehend unklar. "Unsere neugewonnenen Beobachtungen können zur Beantwortung dieser wichtigen Frage beitragen", sagt Alexander Flügel. Sowohl die beweglichen, als auch die angedockten autoaggressiven T-Zellen könnten auf unterschiedliche Weise Schaden anrichten: Die beweglichen Zellen dadurch, dass sie sich durch die Hirnsubstanz bohren, dabei Nervenbahnen und Hirnzellen verdrängen oder gar zerstören. Die arretierten T-Zellen durch ihre Immunsynapsen. Millionen dieser Synapsen bedeuten eine maximale Aktivierung von Millionen T-Zellen und somit eine Flut von Cytokinen im Gehirn. Die Cytokine beeinträchtigen jedoch die Integrität des Nervensystems, da sie das fein regulierte ZNS-Milieu durch Öffnung der schützenden Bluthirnschranke stören und damit die Weiterleitung von Nervenimpulsen blockieren sowie andere potenziell schädigende Immunzellen anlocken.

Auf die Frage, welche therapeutischen Konsequenzen sich aus diesen Befunden ableiten lassen, erklärt Hartmut Wekerle: "Eine Blockade der T-Zellwanderung und der Antigen-Erkennung im Gehirn sollte diese schädigenden Prozesse aufhalten helfen. Somit tragen diese ersten Echtzeit-Filmaufnahmen der Fortbewegung von Immunzellen im zentralen Nervensystem nicht nur zum Verständnis der Krankheitsmechanismen der Multiplen Sklerose und anderer Organ-spezifischer Autoimmunerkrankungen bei, sondern sie eröffnen möglicherweise auch neue therapeutische Ansätze."

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Hirngewebe Nervensystem Sklerose T-Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Infrarotsensor als neue Methode für die Wirkstoffentwicklung
19.07.2018 | Ruhr-Universität Bochum

nachricht Neues aus der Schaltzentrale
18.07.2018 | Karl-Franzens-Universität Graz

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Automatisiertes Befüllen von Regalen im Einzelhandel

19.07.2018 | Verkehr Logistik

Mobilfunkstrahlung kann die Gedächtnisleistung bei Jugendlichen beeinträchtigen

19.07.2018 | Studien Analysen

Mit dem Nano-U-Boot gezielt gegen Kopfschmerzen und Tumore

19.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics