Forscher verallgemeinern das erste Diffusionsgesetz

Aktuelle Publikation im „Journal of Chemical Physics“

1855 stellte der Physiologe Adolf Eugen Fick, der in Zürich und Würzburg forschte, seine Diffusionsgesetze auf. 150 Jahre später sind es nun erneut Wissenschaftler von der Uni Würzburg, die eines dieser Gesetze verallgemeinert haben. Dadurch öffnen sich in der Forschung neue Möglichkeiten.

Der Mensch ist daran gewohnt, dass Transportvorgänge – etwa mit der Bahn oder dem Flugzeug – zielgerichtet und planmäßig ablaufen. Anders verhält es sich in der mikroskopischen Welt der Atome und Moleküle. Diese winzigen Teilchen bewegen sich aufgrund der Umgebungswärme zufällig, was Fachleute als Brownsche Molekularbewegung bezeichnen.

Trotzdem gerät im Mikrokosmos nicht alles durcheinander: Unterschiede in der Konzentration der Teilchen sorgen dafür, dass deren Transport vorzugsweise in eine Richtung läuft. Auf dieser so genannten Diffusion beruhen fast alle Stofftransporte in Lebewesen, so etwa der Gasaustausch in der Lunge oder die Aufnahme von Nährstoffen in die Zelle.

1855 beschrieb Fick mit seinen Gleichungen, wie sich die Konzentration eines Stoffes durch Diffusion lokal verändert. Erst 50 Jahre später, anno 1905, führten Albert Einstein und Marian Smoluchowski diesen Transport auf die Brownsche Molekularbewegung zurück. Gleichzeitig erweiterten sie die Fickschen Gleichungen, um den Einfluss von Kraftfeldern auf die diffundierenden Stoffe zu berücksichtigen.

Weitere 100 Jahre später gelang es jetzt den Forschern Wolfgang R. Bauer von der Medizinischen Klinik I der Uni Würzburg und Walter Nadler von der Uni Wuppertal, das erste Ficksche Diffusionsgesetz zu verallgemeinern. Damit lässt sich nun der Strom der Teilchen zwischen zwei Gebieten unterschiedlicher Konzentration für beliebige Systeme berechnen. Während Fick, Einstein und Smoluchowski die Diffusion nur lokal, also an einem Ort im Raum beschrieben, ergibt sich aus der Arbeit von Bauer und Nadler der gesamte Strom in Abhängigkeit aller Wechselwirkungen, denen die Teilchen auf ihrem Weg ausgesetzt sind. „Dabei zeigt sich, dass nur zwei Kenngrößen wesentlich sind“, erklärt Bauer, nämlich die mittlere Zeit zum Durchqueren des Transportraums und eine spezifische Besetzungszahl. Diese misst gewissermaßen, wie viele Teilchen im Transportraum Platz finden.

„Damit ist man nun in der Lage zu erkennen, welche Wechselwirkungen diffusive Transportprozesse verstärken oder abschwächen“, sagt der Würzburger Forscher. Werden die Teilchen auf ihrem Weg zum Beispiel von Bindungsstellen eingefangen, so könne das ihren Transport verstärken – obwohl man eigentlich das Gegenteil annehmen würde.

Mit dieser neuen Erkenntnis ist die Wissenschaft laut Bauer nun dazu in der Lage, in biologischen Systemen den Diffusionstransport in Membrankanälen oder von Molekülen im Energiestoffwechsel zu verstehen. Andererseits lasse sich dieses Wissen in der Nanotechnologie nutzen, um zum Beispiel molekulare Motoren zu konstruieren oder zu verbessern.

Wolfgang R. Bauer, Walter Nadler: „Stationary flow, first passage times, and macroscopic Fick’s first diffusion law: Application to flow enhancement by particle trapping“, The Journal of Chemical Physics 122, 244904 (2005), online publiziert am 29. Juni 2005, DOI: 10.1063/1.1940056

Weitere Informationen: Prof. Dr. Wolfgang R. Bauer, T (0931) 201-36198, Fax (0931) 201-36291, E-Mail: Bauer_W@klinik.uni-wuerzburg.de

Media Contact

Robert Emmerich idw

Weitere Informationen:

http://www.uni-wuerzburg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer