Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie funktioniert das "Sesam öffne Dich" für Viren?

23.06.2005


Max-Planck-Materialwissenschaftler haben bestimmt, mit welcher Größe Viren oder Nanopartikel optimal in lebende Zellen eindringen können


Der Lebenszyklus eines (Tier-)virus. a) Anbinden ("Andocken") an die Rezeptormoleküle auf der Zellmembran des Wirtes. b) Eintritt in das Zellinnere c) Biosynthese der viralen Komponenten d) Ausknospung von / Ausschleusen aus der Wirtszelle. (e-i) Einige Viren wie die Herpesviren nutzen diesen Mechanismus des Membrandurchtritts auch innerhalb der Wirtszelle: (e) Knospung / Einstülpung durch die innere Zellmembran, (f) Verschmelzung mit der äußeren Zellmembran (endoplasmatisches Reticulum); (g) Knospung / Einstülpung in den Golgi-Apparat; (h) Verschmelzung mit der gegenüberliegenden Membran; (i) Verschmelzung mit der Zellmembran. (Schematische Darstellung, adaptiert von Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D. (1994) Molecular Biology of the Cell (Garland, New York). Bild: Max-Planck-Gesellschaft


Vorhersage der Dauer des Zelleintritts als Funktion / in Abhängigkeit vom Radius der Nanopartikel. Die Maßeinheiten werden der Einfachheit halber nicht gezeigt. Das Modell sagt den optimalen Radius für die kürzeste "Umwicklungszeit" eines Nanopartikels voraus. Außerdem zeigt es den minimalen sowie den maximalen Partikelradius für den Rezeptor-vermittelten Eintritt in eine Zelle. Bild: Max-Planck-Institut für Metallforschung



Viren können Infektionen mit fatalen Folgen hervorrufen, wie allein die globale Aids-Epidemie zeigt. Diese Erreger sind extrem klein, also eigentlich "Nanopartikel", die in Zellen eindringen. Wissenschaftler des Max-Planck-Instituts für Metallforschung in Stuttgart und der Brown University, Providence, USA, haben mit Hilfe eines mathematischen Modells die Größe bestimmt, bei der Viren und andere Nanopartikel besonders effektiv in tierische oder menschliche Zellen eindringen können. Diese beträgt 27 bis 30 Nanometer - ein Wert, der auch durch experimentelle Befunde bestätigt wird. Damit liefert diese Studie die Basis dafür, den Mechanismus des "Rezeptor-vermittelten-Zelleintritts" und damit das Eindringen von Nanopartikeln in Zellen besser verstehen und Wirkstoff- und Gentherapien effizienter und selektiver gestalten zu können (PNAS 10.1073, 22. Juni 2005,).



Viren sind mit einigen zehn bis hundert Nanometern extrem klein und aufgrund des fehlenden Zellkerns keine echten Lebewesen. Vielmehr müssen sie - um überleben und sich vermehren zu können - möglichst schnell in das Innere lebender Zellen gelangen. Viele Viren nutzen dafür den so genannten "Rezeptor-vermittelten-Zelleintritt". Im Zellinneren schließt sich dann ein typischer Lebenszyklus des Virus an (vgl. Abb. 1). Aus experimentellen Untersuchungen weiß man inzwischen, dass Partikel kleiner als 50 Nanometer deutlich schneller in Zellen aufgenommen werden als größere. Die optimale Größe für den Membrandurchtritt liegt bei 25 Nanometern.

Die Erforschung des "Rezeptor-vermittelten-Zelleintritts" von Viren ist wichtig, um besser zu verstehen, wie Nanometer-große Objekte in menschliche oder tierische Zellen eindringen können. Dabei binden Viren oder andere Nanopartikel mit speziellen Bindungsmolekülen (Liganden) an die Rezeptormoleküle auf der äußeren Zellmembran. Die Membran umschließt daraufhin den Virus und schleust ihn nach innen. Dabei entsteht in der Regel eine Proteinhülle aus Clatherin. Doch erst jüngst wurde nachgewiesen, dass Grippe-Viren auch ohne diese Clatherin-Hülle durch die Zellmembran gelangen.

Das jetzt von Prof. Dr. Huajian Gao und Dr. W. Shi, beide Max-Planck-Institut für Metallforschung, und Prof. Dr. L.B. Freund, Brown University, entwickelte mathematische Modell des Rezeptor-vermittelten Zelleintritts ohne Chlatherine-Bildung stützt diese experimentellen Befunde. Das Modell beschreibt, wie eine Zellmembran mit beweglichen Rezeptoren zylinder-/kugelförmige Teilchen mit festen Bindungsmolekülen umwickelt. Die Berechnungen für kugelförmige Teilchen zeigen, dass es einen kleinst- und einen größtmöglichen Radius für den Rezeptor-vermittelten Zelleintritt gibt. Kugelförmige Viren passieren die Zellmembran am schnellsten, werden also am schnellsten umwickelt, wenn ihr Durchmesser lediglich 27 bis 30 Nanometer misst. Die Forscher kommen daher zu dem Schluss, dass sich in der Evolution bestimmte Virengrößen herausgebildet haben, die einen besonders schnellen Eintritt in Zellen ermöglichen.

Die genaue Kenntnis dieser optimalen Größe ist wichtig, um den Eintritt von Nanopartikeln in menschliche Zellen besser zu verstehen. So können die neuen Erkenntnisse dieser Studie nun als Richtlinie dienen, um das Verabreichen von Pharmaka effizienter und selektiver zu machen und die Anwendung zielgenauer Medikamenten-Targeting-Systeme zu optimieren. Zudem kann man mit diesen Kenntnissen auch mögliche Gefährdungen von Umwelt und Gesundheit durch Nanopartikel besser bewerten.

Prof. Huajian Gao | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mf.mpg.de
http://www.mpg.de

Weitere Berichte zu: Nanometer Nanopartikel Virus Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics