Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wie funktioniert das "Sesam öffne Dich" für Viren?

23.06.2005


Max-Planck-Materialwissenschaftler haben bestimmt, mit welcher Größe Viren oder Nanopartikel optimal in lebende Zellen eindringen können


Der Lebenszyklus eines (Tier-)virus. a) Anbinden ("Andocken") an die Rezeptormoleküle auf der Zellmembran des Wirtes. b) Eintritt in das Zellinnere c) Biosynthese der viralen Komponenten d) Ausknospung von / Ausschleusen aus der Wirtszelle. (e-i) Einige Viren wie die Herpesviren nutzen diesen Mechanismus des Membrandurchtritts auch innerhalb der Wirtszelle: (e) Knospung / Einstülpung durch die innere Zellmembran, (f) Verschmelzung mit der äußeren Zellmembran (endoplasmatisches Reticulum); (g) Knospung / Einstülpung in den Golgi-Apparat; (h) Verschmelzung mit der gegenüberliegenden Membran; (i) Verschmelzung mit der Zellmembran. (Schematische Darstellung, adaptiert von Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. & Watson, J. D. (1994) Molecular Biology of the Cell (Garland, New York). Bild: Max-Planck-Gesellschaft


Vorhersage der Dauer des Zelleintritts als Funktion / in Abhängigkeit vom Radius der Nanopartikel. Die Maßeinheiten werden der Einfachheit halber nicht gezeigt. Das Modell sagt den optimalen Radius für die kürzeste "Umwicklungszeit" eines Nanopartikels voraus. Außerdem zeigt es den minimalen sowie den maximalen Partikelradius für den Rezeptor-vermittelten Eintritt in eine Zelle. Bild: Max-Planck-Institut für Metallforschung



Viren können Infektionen mit fatalen Folgen hervorrufen, wie allein die globale Aids-Epidemie zeigt. Diese Erreger sind extrem klein, also eigentlich "Nanopartikel", die in Zellen eindringen. Wissenschaftler des Max-Planck-Instituts für Metallforschung in Stuttgart und der Brown University, Providence, USA, haben mit Hilfe eines mathematischen Modells die Größe bestimmt, bei der Viren und andere Nanopartikel besonders effektiv in tierische oder menschliche Zellen eindringen können. Diese beträgt 27 bis 30 Nanometer - ein Wert, der auch durch experimentelle Befunde bestätigt wird. Damit liefert diese Studie die Basis dafür, den Mechanismus des "Rezeptor-vermittelten-Zelleintritts" und damit das Eindringen von Nanopartikeln in Zellen besser verstehen und Wirkstoff- und Gentherapien effizienter und selektiver gestalten zu können (PNAS 10.1073, 22. Juni 2005,).



Viren sind mit einigen zehn bis hundert Nanometern extrem klein und aufgrund des fehlenden Zellkerns keine echten Lebewesen. Vielmehr müssen sie - um überleben und sich vermehren zu können - möglichst schnell in das Innere lebender Zellen gelangen. Viele Viren nutzen dafür den so genannten "Rezeptor-vermittelten-Zelleintritt". Im Zellinneren schließt sich dann ein typischer Lebenszyklus des Virus an (vgl. Abb. 1). Aus experimentellen Untersuchungen weiß man inzwischen, dass Partikel kleiner als 50 Nanometer deutlich schneller in Zellen aufgenommen werden als größere. Die optimale Größe für den Membrandurchtritt liegt bei 25 Nanometern.

Die Erforschung des "Rezeptor-vermittelten-Zelleintritts" von Viren ist wichtig, um besser zu verstehen, wie Nanometer-große Objekte in menschliche oder tierische Zellen eindringen können. Dabei binden Viren oder andere Nanopartikel mit speziellen Bindungsmolekülen (Liganden) an die Rezeptormoleküle auf der äußeren Zellmembran. Die Membran umschließt daraufhin den Virus und schleust ihn nach innen. Dabei entsteht in der Regel eine Proteinhülle aus Clatherin. Doch erst jüngst wurde nachgewiesen, dass Grippe-Viren auch ohne diese Clatherin-Hülle durch die Zellmembran gelangen.

Das jetzt von Prof. Dr. Huajian Gao und Dr. W. Shi, beide Max-Planck-Institut für Metallforschung, und Prof. Dr. L.B. Freund, Brown University, entwickelte mathematische Modell des Rezeptor-vermittelten Zelleintritts ohne Chlatherine-Bildung stützt diese experimentellen Befunde. Das Modell beschreibt, wie eine Zellmembran mit beweglichen Rezeptoren zylinder-/kugelförmige Teilchen mit festen Bindungsmolekülen umwickelt. Die Berechnungen für kugelförmige Teilchen zeigen, dass es einen kleinst- und einen größtmöglichen Radius für den Rezeptor-vermittelten Zelleintritt gibt. Kugelförmige Viren passieren die Zellmembran am schnellsten, werden also am schnellsten umwickelt, wenn ihr Durchmesser lediglich 27 bis 30 Nanometer misst. Die Forscher kommen daher zu dem Schluss, dass sich in der Evolution bestimmte Virengrößen herausgebildet haben, die einen besonders schnellen Eintritt in Zellen ermöglichen.

Die genaue Kenntnis dieser optimalen Größe ist wichtig, um den Eintritt von Nanopartikeln in menschliche Zellen besser zu verstehen. So können die neuen Erkenntnisse dieser Studie nun als Richtlinie dienen, um das Verabreichen von Pharmaka effizienter und selektiver zu machen und die Anwendung zielgenauer Medikamenten-Targeting-Systeme zu optimieren. Zudem kann man mit diesen Kenntnissen auch mögliche Gefährdungen von Umwelt und Gesundheit durch Nanopartikel besser bewerten.

Prof. Huajian Gao | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mf.mpg.de
http://www.mpg.de

Weitere Berichte zu: Nanometer Nanopartikel Virus Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Neuer Behandlungsansatz für Juckreizgeplagte
15.08.2018 | Universität Zürich

nachricht Cholestase: Riss in Lebermembran lässt Galle abfließen
15.08.2018 | Leibniz-Institut für Arbeitsforschung an der TU Dortmund

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: Neue interaktive Software: Maschinelles Lernen macht Autodesigns aerodynamischer

Neue Software verwendet erstmals maschinelles Lernen um Strömungsfelder um interaktiv designbare 3D-Objekte zu berechnen. Methode wird auf der renommierten SIGGRAPH-Konferenz vorgestellt

Wollen Ingenieure oder Designer die aerodynamischen Eigenschaften eines neu gestalteten Autos, eines Flugzeugs oder anderer Objekte testen, lassen sie den...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Das Architekturmodell in Zeiten der Digitalen Transformation

14.08.2018 | Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Macht Sinn: Fraunhofer entwickelt Sensorsystem für KMU

15.08.2018 | Energie und Elektrotechnik

Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

15.08.2018 | Informationstechnologie

FKIE-Wissenschaftler präsentiert neuen Ansatz zur Detektion von Malware-Daten in Bilddateien

15.08.2018 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics