Lebendimpfstoff gegen Influenza bei Mäusen erfolgreich

Von Marburger Virologen neu entwickelter Impfstoff setzt an zentralem Infektionsmechanismus von Influenza-A-Viren an – Mögliche Antwort auf Pandemiegefahr – Veröffentlichung in Nature Medicine

Forscher des Instituts für Virologie der Philipps-Universität Marburg haben eine neue Methode zur Herstellung eines Lebendimpfstoffs gegen den Influenza-Virenstamm WSN33 entwickelt. Der Impfstoff setzt an einem Infektionsmechanismus an, den alle Influenza-A-Virenstämme gleichermaßen besitzen – dabei wird das Virusoberflächenprotein Hämagglutinin „gespalten“ -, und kann daher, so die Erwartung, auch gegen alle Viren dieses Typs eingesetzt werden. Versuche an Mäusen zeigten, dass der neue Impfstoff vollständigen Schutz gegen eine Infektion bietet.

Im britischen Fachjournal Nature Medicine hat Dr. Jürgen Stech, Mitglied der Arbeitsgruppe um Institutsdirektor Professor Dr. Hans-Dieter Klenk, gemeinsam mit diesem seine Ergebnisse nun veröffentlicht. Unter dem Titel „A new approach to an influenza live vaccine: modification of the cleavage site of hemagglutinin“ sind sie als Advance Online Publication am 29. Mai 2005 erschienen (doi:10.1038/nm1256). Zu den Autoren gehören auch Dr. Holger Garn und Doktorand Michael Wegmann vom Institut für Klinische Chemie und Molekulare Diagnostik der Philipps-Universität sowie Dr. Ralf Wagner, ein ehemaliger Wissenschaftlicher Mitarbeiter, der mittlerweile ans Langener Paul-Ehrlich-Institut gewechselt hat.

Das Protein Hämagglutinin sitzt auf der Oberfläche des Virus. Seine „Spaltstelle“ ist zentral für den Prozess der Infektion einer Wirtszelle: Wird sie gespalten, kommt es zu einer Strukturveränderung des Proteins, das Hämagglutinin „faltet“ sich und die Hülle des Virus verschmilzt, „fusioniert“, mit einer zellulären Membran. Erst jetzt kann das Virus sein genetisches Material in die Wirtszelle einbringen. Auslöser für den Prozess der Faltung sind bestimmte Enzyme, Proteasen genannt, die im Wirtsorganismus selbst vorliegen. „Die Spaltstelle haben wir nun genetisch so modifiziert“, erklärt Virologe Stech, „dass sie nur noch von einer ganz bestimmten Protease, nämlich der Elastase, gespalten werden kann.“ Die Elastase wiederum ist im lebenden Organismus nur in begrenztem Maße vorhanden. „Dies hat den gewünschten Effekt“, so Stech, „dass die Replikation der Virusmutante spätestens nach einigen wenigen Zyklen endet, das Immunsystem zu diesem Zeitpunkt aber bereits zur Bildung von Antikörpern und Killerzellen stimuliert wurde.“ In Zellkulturen hingegen lässt sich die Mutante, die Stech auf den Namen WSN-E getauft hat, ebenso gut in großer Menge züchten wie das infektiöse „Originalvirus“ WSNwt und kann so als Basis für einen Impfstoff dienen.

Weil die Membranfusion, die auf die Spaltung des Hämagglutinins folgt, ein universeller Mechanismus ist, den alle Influenza-A-Virenstämme für die Infektion einer Wirtszelle benutzen, sind die Ergebnisse der Marburger Forscher voraussichtlich auch auf andere Stämme übertragbar.

Influenza, allgemein als Grippe bekannt, ist eine durch Viren ausgelöste Atemwegsinfektion. Sie kann zu schweren Erkrankungen mit gefährlichen Komplikationen führen und ist nicht mit den harmloseren „grippalen Infekten“ identisch, die in der Bevölkerung oft ebenfalls als Grippe bezeichnet werden. Speziell das Influenza-A-Virus führte bereits zu Pandemien wie der „Spanischen Grippe“ von 1918/1919, der weltweit zwanzig bis fünfzig Millionen Menschen erlagen, darunter rund 100.000 in Deutschland. Die „Asiatische Grippe“ von 1957/1958 forderte rund eine Million Todesopfer, die „Hongkong-Grippe“ von 1968/1969 tötete mehr als 800.000 Menschen.

Mit großem Erfolg haben die Virologen den neuen Lebendimpfstoff bereits an Mäusen getestet. Ab einer bestimmten Dosierung überlebten alle Tiere der infizierten Versuchsgruppe. Bei der höchsten Dosis wiesen die Mäuse nicht einmal mehr Krankheitssymptome auf, die infizierten und noch im Wachstum befindlichen Jungmäuse legten sogar weiter an Gewicht zu. Auf dem Weg zur Anwendung am Menschen sind nun zunächst Experimente mit Frettchen geplant, deren biologische Struktur der des Menschen ähnlicher ist und die sehr empfindlich auf das Influenza-Virus reagieren.

„Unser vorerst größtes Ziel haben wir nun erreicht“, so Dr. Stech, „unsere Virusmutante hat Modellcharakter für beliebige Influenza-A-Viren.“ Insbesondere die große Ähnlichkeit von Mutante und Wildtyp führe zu einer sehr effektiven Immunantwort des Körpers: „Unsere Mutante besitzt lediglich eine andere Spaltstelle als der Wildtyp. Alle Antigene hingegen, diejenigen Substanzen also, die das Immunsystem zur Bildung von Antikörpern und Killerzellen anregen, sind identisch.“ Aus Sicherheitsgründen planen die Forscher zudem, das „Gürtel- und Hosenträger-Prinzip“ (Stech) anzuwenden: Um Rückmutationen zum krankheitserregenden Wildtyp zu vermeiden, werden weitere, die Infektion abschwächende Merkmale in das Virus eingebracht: Wenn eines dieser Merkmale sich genetisch verändern sollte, würde immer noch das andere greifen.

Lebendimpfstoffe haben gegenüber den bei der Influenza-Vorsorge üblichen Totimpfstoffen große Vorteile. Impfungen mit Totimpfstoffen müssen jährlich aufgefrischt werden. Zudem gibt es gute und schlechte „Jahrgänge“ von Totimpfstoffen, denn diese sind nicht immer optimal an die sich genetisch ständig verändernden Virenstämme angepasst.

Media Contact

Thilo Körkel idw

Weitere Informationen:

http://www.uni-marburg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer