Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Forschungsprogramm über Biomolekulare Nano-Maschinen gestartet

03.06.2005


Max-Planck-Institut für Kolloid- und Grenzflächenforschung erhält zwei Mio. Euro für Europäisches Forschungsnetzwerk


Nanoautobahn in Aktion: Zwei Schnappschüsse von mikrometergroßen Teilchen (helle Punkte), die entlang der nahezu parallelen Mikrotubuli transportiert werden (dunkle Linien). Die Mikrotubuli liegen unbeweglich, mit den nach rechts gerichteten Plus-Enden auf dem Glasträger. Die Teilchen werden mit Hilfe von Schrittmotoren, die aufgrund der geringen Größe unsichtbar sind, gezogen. Die Aufnahme des oberen und unteren Schnappschusses liegt 12 Sekunden auseinander. Während dieser Zeit wurden die Teilchen ca. 10 Mikrometer nach rechts bewegt. Bild: Max-Planck-Institut für Kolloid- und Grenzflächenforschung



Ein Forschungsprogramm über "Aktive Biomimetische Systeme", an dem Wissenschaftler des Max-Planck-Instituts für Kolloid- und Grenzflächenforschung sowie von acht weiteren Forschungseinrichtungen in Deutschland, Frankreich, den Niederlanden und Italien beteiligt sind, erhält eine Förderung der Europäischen Kommission von 2 Mio. Euro. Im Rahmen eines "Specific Targeted Research Project (STREP)" untersuchen die Forscher biomolekulare Nano-Maschinen, also gerichtet wachsende Filamente bzw molekulare Schrittmotoren. Diese Strukturen sind in der Lage, Schub- bzw Zugkräfte in der Nanowelt zu erzeugen. Die Wissenschaftler erforschen jene molekularen Mechanismen, die genau diesen Kräften zugrunde liegen. Darüber hinaus sollen Möglichkeiten gezeigt werden, wie man solche molekularen Maschinen in Nano- und Mikrosysteme integrieren kann. Der europäische Forschungsverbund wird von Prof. Reinhard Lipowsky koordiniert und ist am 1. Mai 2005 gestartet.



Biomimetische Systeme sind Modelle, die bestimmte Aspekte biologischer Organismen nachahmen. So ist es verblüffend, dass biologische Zellen zu dramatischen morphologischen Veränderungen fähig sind. Sie können problemlos ihre Form sehr dünnen Poren anpassen, um sich durch diese hindurch zu zwängen, oder lange "Füße" ausbilden, um über Oberflächen zu kriechen und sich selbst in zwei Tochterzellen teilen. All diese Transformationsprozesse basieren zwei Typen von biomolekularen Nano-Maschinen - längenveränderlichen Filamenten und leistungsfähigen Schrittmotoren.

Beide Maschinen-Typen werden zwar durch Proteine gebildet, benutzen aber ganz unterschiedliche Mechanismen, um Kräfte zu erzeugen. Die Filamente sind stäbchenförmige Strukturen, die nur ca. 10 Nanometer dick, aber viele Mikrometer lang sind. Bei Zugabe von nanometergroßen Bausteinen verlängert sich eines ihrer Enden und erzeugt auf diese Weise Schubkräfte. Schrittmotoren sind Proteine mit zwei identischen "Beinen", jedes mit einer Größe von ca. 10 Nanometern. Kommt ein solcher Motor mit einem Filament in Kontakt, verändert sich seine äußere Form derart, dass an dem Filament Zugkräfte erzeugt werden.

Eine einzelne Nano-Maschine generiert aufgrund ihrer winzigen Größe relativ geringe Kräfte von wenigen Piconewton (10-12 Newton). Doch reagieren solch winzige Maschinen sehr sensibel auf ihre Umgebung - allein der thermische Zusammenstoß mit Molekülen kann ihre Funktion empfindlich stören. Bemerkenswert ist, dass alle von lebenden Zellen und Organismen erzeugten Kräfte durch die gleichzeitige und abgestimmte Bewegung von vielen derartigen Nano-Maschinen erzeugt werden. Zellen können auf diese Weise Kräfte im Nanonewton-Bereich ausüben, Tiere sogar im Bereich von Hunderten von Newton. Biologische Systeme können also Kräfte in der Größenordnung von einigen Piconewton (10-12 Newton) bis zu mehreren Hundert Newton erzeugen. Wollen wir Menschen diese erstaunliche Fähigkeit nachahmen, müssen wir Filamentbündel und Gruppen von Motoren in größere und komplexere Systeme integrieren. Das ist eine fundamentale Herausforderung für die Bionanowissenschaften.

Das jetzt etablierte Forschungsnetzwerk über "Aktive Biomimetische Systeme" wird von Prof. Reinhard Lipowsky, Direktor am Max-Planck-Institut für Kolloid- und Grenzflächenforschung, koordiniert. Ziel des Verbundes ist es, zu einem tieferen Verständnis jener molekularen Prozesse zu kommen, die für die Erzeugung der Schub- und Zugkräfte verantwortlich sind. Darüber hinaus soll das kooperative Verhalten von Filamenten und Motoren in Bündeln, zufälligen Maschenwerken und komplexeren räumlichen Anordnungen beleuchtet werden. Des Weiteren wollen die Forscher die Eigenschaften von biomimetischen Systemen auf systematische und verlässliche Weise kontrollieren und variieren können, um auf diese Weise ihre Architektur optimieren und ihr Design verbessern zu können.

Aktive biomimetische Systeme, wie sie in dem Forschungsnetzwerk untersucht werden, haben viele potentielle Anwendungsmöglichkeiten: Transportsysteme für Wirkstoffe, molekulare Sortiervorrichtungen, diagnostische Geräte für das Screening von Zellen oder Gerüste für künstliche Gewebe. Eine langfristige Vision ist die Konstruktion von Nano-Robotern, die gezielt bestimmte Arbeiten im Nanometerbereich ausführen können. Diese winzigen Roboter werden einmal einen großen Einfluss auf viele Aspekte des menschlichen Lebens haben, wie beispielsweise bei der medizinischen Diagnostik einzelner Zellen, beim zielgerichteten Wirkstofftransport zu spezifischen Zellen oder in der nichtinvasiven Chirurgie sehr kleiner Regionen im menschlichen Körper. Gleichermaßen repräsentieren diese Roboter wichtige Komponenten für die Entwicklung von Herstellungsverfahren im Nanometerbereich. Dies erscheint vielversprechend, um damit molekulare Komponenten zu integrierten Nano-Systemen zusammenzubauen.

Die Forschung innerhalb dieses europäischen Netzwerks ist hoch interdisziplinär und kombiniert (bio)chemische Präparation, (bio)physikalische Charakterisierung und theoretische Modellbildung. Erreichte Ergebnisse sind die gemeinschaftliche Leistung von Biophysikern, Biochemikern, Physikalischen Chemikern und Bioingenieuren. Die teilnehmenden Institutionen sind: Max-Planck-Institut für Kolloid- und Grenzflächenforschung Potsdam, AMOLF Institut Amsterdam, BASF Ludwigshafen, Curie Institut Paris, Europäische Laboratorium für Molekularbiologie (EMBL) Heidelberg, Institut für Molekulare Biotechnologie Jena, CNRS Labor über Enzymologie und strukturelle Biochemie Gif-sur-Yvette, Politécnico Mailand, Universität Leipzig.

Prof. Dr. Reinhard Lipowsky | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpikg.mpg.de
http://www.mpg.de

Weitere Berichte zu: Filament Nano-Maschinen Schrittmotore

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics