Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Molekulare Steuerung der synaptischen Plastizität

02.06.2005


Max-Planck-Forscher enthüllen weitere molekulare Details, die die Stärke der Informationsübertragung zwischen Nervenzellen im Gehirn regeln


Ein weiterer Schritt bei der Aufklärung jener Mechanismen, die die Informationsübertragung zwischen Nervenzellen regulieren, ist jetzt Forschern um Ralf Schneggenburger am Max-Planck-Institut für biophysikalische Chemie in Göttingen gelungen. Mit elektrophysiologischen Messungen und der optischen Stimulation einzelner Nervenzellen konnten die Wissenschaftler zeigen, dass spezielle Botenstoffe die Wahrscheinlichkeit beeinflussen, mit der Vesikel - winzige mit Neurotransmittern gefüllte Bläschen - mit der Zellmembran verschmelzen und in nachgeschalteten Nervenzellen ein chemisches Signal auslösen. Diese Erkenntnisse sollten es ermöglichen, jene Proteine zu identifizieren, die zur Plastizität der Signalübertragung und damit zur Lernfähigkeit neuronaler Netzwerke beitragen (Nature, 26. Mai 2005).

Unser Gehirn besteht aus etwa 100 Milliarden Nervenzellen, die in komplexen Netzwerken miteinander verknüpft sind. Die Kommunikation zwischen diesen Zellen ist essentiell für die Funktionsweise unseres Gehirns. Nervenzellen kommunizieren untereinander über spezielle Kontaktstellen, die "Synapsen", wo Transmitter-gefüllte Vesikel auf einen elektrischen Impuls der präsynaptischen Nervenzelle hin mit der Zellmembran fusionieren und daraufhin einen Botenstoff freisetzen, der die postsynaptische Nervenzelle in ihrer elektrischen Aktivität beeinflusst. Dieser Prozess der synaptischen Übertragung ist in ihrer Stärke hochgradig modulierbar, und die Plastizität der synaptischen Übertragung wird als Grundlage für Lernen und Gedächtnisbildung angesehen.


Damit Nervenzellen auch bei wiederholten Reizen Neurotransmitter freisetzen können, halten diese an jeder synaptischen Kontaktstelle einen Pool von drei bis acht bereits angedockte und sekretionsbereite Vesikel bereit. Diese nur etwa 40 Nanometer große Bläschen (das entspricht einem Fünfundzwanzigtausendstel eines Millimeters) kann man im Elektronenmikroskop eng angedockt an die Plasmamembran der präsynaptischen Nervenzelle beobachten (s. Abb.). Doch was genau bei der Fusion synaptischer Vesikel mit der Zellmembran geschieht, lässt sich weder mit Elektronen- noch mit Lichtmikroskopen direkt beobachten. Daher müssen die Vorgänge während der synaptischen Übertragung aus verschiedenen experimentellen Beobachtungen rekonstruiert werden.

Die Arbeitsgruppe von Ralf Schneggenburger arbeitet mit einer ungewöhnlich großen, der so genannten "Held’schen Calyx-Synapse". Die Nervenendigungen sind in dieser Zelle so groß, dass elektrische Messungen mit dem patch clamp-Verfahren direkt an der präsynaptischen Nervenendigung durchgeführt werden können. Dadurch ist es möglich, nicht nur die Ströme von Kalzium-Ionen (Ca2+) im Nerventerminal zu messen, sondern Ca2+-Indikatorfarbstoffe und photolysierbare Ca2+-Chelatoren über die patch-Pipette unmittelbar in das Zytoplasma der Nervenendigung einzuschleusen. Auf diese Weise kann die Ca2+-aktivierte Vesikelfusion in der Nervenendigung gezielt ausgelöst werden. Dies ermöglichte es, die Modulation der Synapsenstärke im Detail zu untersuchen.

Auf diese Weise konnten die Max-Planck-Forscher nun erstmals direkt nachweisen, dass Phorbolester, welche den Proteinkinase-C / Munc-13-Signalweg aktivieren, zu einer Erhöhung der Kalzium-Sensitivität der Vesikelfusion führen, ohne dass sich der Pool schnell freisetzbarer Vesikel nennenswert erhöht. Dieser Modulationsweg ist energetisch günstig für die Nervenendigung, da die Bereitstellung einer höheren Zahl sekretionsbereiter Vesikel ansonsten mit einem Verbrauch von ATP einherginge. Dieser Befund zeigt, dass Nervenzellen über einen Mechanismus verfügen, um die Kalzium-Empfindlichkeit der sekretionsbereiten Vesikel zu beeinflussen.

Die Ergebnisse werfen auch ein neues Licht auf den Zusammenhang zwischen der Kalzium-vermittelten und der Kalzium-unabhängigen Fusion von Vesikeln mit der Zellmembran. Bisher hatte man angenommen, dass die "spontane" Fusion von Vesikeln in unstimulierten Nervenzellen unabhängig von Kalzium erfolgt, und möglicherweise von einer speziellen Gruppe angedockter Vesikel übernommen wird. Doch wie die Forscher nun zeigen konnten, treten spontane Vesikelfusionen am unteren Ende derselben Dosis-Wirkungskurve auf, die den Zusammenhang zwischen der Kalzium-vermittelten Vesikelfusionsrate und der intrazellulären Kalzium-Konzentration beschreibt. Daher vermuten die Forscher, dass derselbe Kalzium-Sensorkomplex sowohl die spontane als auch die Kalzium-getriebene Vesikelfusion vermittelt.

Überraschend stellten die Forscher jedoch fest, dass bei niedrigen Kalzium-Konzentrationen bereits ein bis zwei Ca2+-Ionen ausreichen, um ein Vesikel zur Fusion zu bringen. Bei höheren Ca2+-Konzentrationen sind dann zunehmend mehr, bis zu vier oder fünf Ca2+-Ionen notwendig, um die Fusion eines einzelnen Vesikels auszulösen. Allerdings findet die Vesikelfusion nach der Bindung von vier bis fünf Ca2+-Ionen an den Kalzium-Sensorkomplex auch wesentlich schneller statt.

Diese Befunde zeigen, dass die Kalzium-Regulation der Vesikelfusion weitaus komplexer ist als bisher angenommen. Die Empfindlichkeit für Kalzium wird offenbar direkt durch intrazelluläre Signalwege gesteuert, wie die Aktivierung des Proteinkinase-C / Munc-13 Signalweges, wobei derselbe Kalzium-Sensor sowohl die Ca2+-getriebene als auch die spontane Vesikelfusion steuert. Dieser Sensor besteht vermutlich aus einem Komplex präsynaptischer Proteine, der durch so genannte SNARE-Proteine (engl.: soluble NSF-attachment protein receptor) sowie weitere angelagerte Proteine, wie die Synaptotagmine, gebildet wird. Zudem deuten die Untersuchungsergebnisse darauf hin, dass noch weitere präsynaptische Proteine, wie Munc-13, die durch Diazylglycerin aktiviert werden, die Kalzium-Sensitivität der Vesikelfusion beeinflussen. Die Forscher wollen nun die genaue Funktion der synaptischen Proteine ergründen, die an der Regulation der Kalzium-vermittelten Vesikelfusion beteiligt sind.

Dieses Projekt wurde durch die Deutsche Forschungsgemeinschaft und die Max-Planck-Gesellschaft unterstützt.

Dr. Ralf Schneggenburger | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Nervenendigung Nervenzelle Plastizität Protein Vesikel Vesikelfusion Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen
17.08.2018 | Leibniz Universität Hannover

nachricht Forschende entschlüsseln das Alter feiner Baumwurzeln
17.08.2018 | Eidgenössische Forschungsanstalt für Wald, Schnee und Landschaft WSL

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics