Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Vorgänge in Miniporen und innere Ordnung von Riesenmolekülen

24.05.2005


NMR-Experte Gerd Buntkowsky ist neuer Professor für Physikalische Chemie an der Universität Jena


Die NMR-Spektroskopie ist Ausgangspunkt für die verschiedenen Forschungsaktivitäten von Prof. Dr. Gerd Buntkowsky, dem neuen Professor für Physikalische Chemie an der Universität Jena. NMR steht für Nuclear Magnetic Resonance, zu deutsch Kernspinresonanz. Bei diesem Verfahren wird das Verhalten des Kernspins, einer schnellen Drehung des Atomkerns um seine Achse, in starken gleichmäßigen Magnetfeldern untersucht. Die NMR ist heute eine der wichtigsten Methoden zur Aufklärung der Struktur vorzugsweise organischer Stoffe. "Wir gebrauchen NMR-Spektroskopie u. a., um so genannte weiche Materie zu untersuchen", berichtet Buntkowsky. Darunter versteht man Feststoffe, deren Moleküle nicht hochgeordnet in einem Kristallgitter vorliegen. Typische Vertreter sind Biopolymere wie Eiweiße oder ihre katalytisch aktiven Vettern, die Enzyme. Sie bestehen aus vielen verschiedenen Grundbausteinen, die vielfältige Möglichkeiten haben, sich zu organisieren.

"Ihre geometrische Struktur entsteht durch das Wechselspiel von wasserabweisenden oder wasserliebenden Eigenschaften der Bausteine, ihren sterischen Wechselwirkungen, Ladungsverteilungen und nicht zuletzt Wasserstoffbrückenbindungen", erklärt der Physiker, der von der Freien Universität Berlin an die Friedrich-Schiller-Universität wechselte. Momentan leitet er in diesem Bereich Projekte in einem Sonderforschungsbereich (SFB) zu Protein-Kofaktor-Wechselwirkungen und einem Graduiertenkolleg zu Wasserstoffbrücken. "Wir wollen die Aufklärung der molekularen Wirkmechanismen einiger komplexer Biomoleküle voranbringen, indem wir mit NMR die funktionellen Wasserstoffbrückenbindungen untersuchen", so Buntkowsky. Diese Untersuchungen stehen im engen Zusammenhang mit den Zielen des Jenaer SFBs "Metallvermittelte Reaktionen nach dem Vorbild der Natur".


Ausgefeilte NMR-Techniken benötigt Buntkowsky jedoch auch, um grundlegende Fragen zur Dynamik kondensierter Materie zu beantworten. So untersucht er beispielsweise, wie sich Gastmoleküle, z. B. Wasser, in den Poren von Silikatmaterialien verhalten. Der Porendurchmesser beträgt einen Nanometer. Legt man die typische Größe eines Wassermoleküls von etwa 0,1 Nanometer zugrunde, bedeutet das, dass nur einige Dutzend Moleküle quer in die Pore passen. Auch hier bilden sich wieder Wasserstoffbrückenbindungen aus, die sich mit NMR-Technicken untersuchen lassen. "Solche Experimente tragen zum Verständnis der Wasser-Oberflächenwechselwirkung auf molekularer Ebene bei", erklärt Buntkowsky. Die porösen Silikatmaterialien, an denen er forscht, sind zudem für katalytische Anwendungen interessant, denn sie haben riesige innere Oberflächen, die sich relativ leicht chemisch modifizieren lassen. Zum Vergleich: Drei zuckerwürfelgroße Teile haben die innere Oberfläche eines Fußballfeldes. Mit seinen Forschungen bietet der neue Physikochemiker der Uni Jena Ansatzpunkte für Physik-Theoretiker, Materialwissenschaftler aber auch Biologen und Mediziner.

Im Westerwald aufgewachsen studierte Gerd Buntkowsky Physik an der Freien Universität Berlin. Dort promovierte er 1991 über optische Kernspinpolarisation und Multiquanten-NMR an organischen Festkörpern und betrieb danach strukturelle und dynamische Studien mit dipolarer und quadrupolarer Festkörper-NMR, die in seine Habilitation (2000) einflossen. Ein Auslandsaufenthalt führte ihn an das National Institute of Health in Bethesda, USA. Dort begann er mit NMR-Methoden die Struktur von beta-Amyloidpeptiden zu untersuchen. Die langen Eiweißketten "verkleben" zu beta-Faltblattstrukturen und bilden in den Hirnen von Alzheimerpatienten spezifische Plaques. Auch diese Alzheimer-Forschungen will Buntkowsky nun in Jena fortführen.

Kontakt:
Prof. Dr. Gerd Buntkowsky
Institut für Physikalische Chemie der Universität Jena
Helmholtzweg 4, 07743 Jena
Tel.: 03641 / 948310
E-Mail: gerd.buntkowsky@uni-jena.de

Hintergrundinformation zur NMR-Spektroskopie:

NMR steht für Nuclear Magnetic Resonance, zu deutsch Kernmagnetische Resonanz oder Kernspinresonanz. Die NMR-Spektroskopie beruht auf dem Phänomen der Kernspinresonanz in starken, homogenen Magnetfeldern. Der Eigendrehimpuls der Atomkerne, Spin genannt, hat zwei energetisch unterschiedliche Orientierungsmöglichkeiten in diesem Magnetfeld. Durch Einstrahlung von passenden Energiequanten können Spins in den höherwertigen Energiezustand "umklappen". Dabei wird eine Radiowelle mit der entsprechenden Frequenz absorbiert. Dies wird messtechnisch erfasst. Die Atome können chemisch aber unterschiedlich gebunden sein, so dass die Änderung der Elektronendichte zu einer Abschirmung bzw. Freilegung des Atomkerns führt. Das bewirkt, dass hier eine geringere bzw. höhere effektive Feldstärke wirkt. Hiermit geht auch eine Verschiebung der Resonanzfrequenz einher. Auf diesem Prinzip und dem Phänomen, dass einige Atomkerne miteinander in Kopplung treten, beruht die Strukturbestimmung mittels NMR-Techniken. Die Methode ist eng verwandt mit der in der Medizin eingesetzten Kernspintomographie.

Stefanie Hahn | idw
Weitere Informationen:
http://www.uni-jena.de/

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

nachricht Einbahnstraße für das Salz
21.09.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

4. BF21-Jahrestagung „Car Data – Telematik – Mobilität – Fahrerassistenzsysteme – Autonomes Fahren – eCall – Connected Car“

21.09.2018 | Veranstaltungen

Forum Additive Fertigung: So gelingt der Einstieg in den 3D-Druck

21.09.2018 | Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue CBMC-Geräteschutzschaltervarianten

22.09.2018 | Energie und Elektrotechnik

ISO-27001-Zertifikat für die GFOS mbH und die GFOS Technologieberatung GmbH

21.09.2018 | Unternehmensmeldung

Kundenindividuelle Steckverbinder online konfigurieren und bestellen

21.09.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics