Die Spediteure der Zellautobahn

In der Vorform des Flügels einer Fliegenlarve sind hier Partikel der Lipoproteine grün gefärbt und Wingless mit einem roten Marker gekennzeichnet. Die Beobachtung: Das Morphogen Wingless ist in denselben Endosomen zu entdecken wie die Lipoproteinpartikel. Bild: MPI für molekulare Zellbiologie und Genetik

Wie Transportfahrzeuge auf dem Strassennetz transportieren sogenannte Argosome Stoffe von einer Zelle zur anderen


Um ihre Wirkung im Körper zu entfalten, müssen Stoffe erst einmal ihren Bestimmungsort im Organismus erreichen. Die Mechanismen, mit denen sich Stoffe innerhalb der Zelle bewegen, sind hinlänglich bekannt. Wird aber ein Stoff in einer Zelle produziert und kommt in einer völlig anderen Zelle zum Einsatz, so müssen unglaublich lange Transportwege überwunden werden. Wenn der Stoff in Wasser gelöst werden kann, kann er wie beim menschlichen Blutkreislauf mit Hilfe einer Lösung transportiert werden. Wo dies nich möglich ist, muss der Organismus kreativ werden. Forscher des Max-Planck Instituts für Molekulare Zellbiologie und Genetik (MPI-CBG) in Dresden haben genau einen solche kreative Rafinesse der Zelle entdeckt: Prozesse in Zellen der Fruchtfliege Drosophila melanogaster, welche neue Einsichten in die Übertragung bestimmter Proteinsequenzen zwischen einzelnen Zellen bieten: Stoffe nutzen Transporter, die sich zwischen den Zellen in Organismen – teils über lange Strecken – bewegen können. Diese Spediteure, die die Dresdner Forscher Argosome tauften, ermöglichen es Proteinen also, Strecken zurückzulegen, die sonst unüberbrückbar wären (Nature, 05. Mai 2005).

Die Dresdner Wissenschaftler konzentrierten sich bei ihren Untersuchungen auf Wingless und Hedgehog. Dies sind zwei Morphogene, also Stoffe, die Wachstum und Entwicklung eines Organismus in der Embryonalphase koordinieren. Sie entfalten ihre Wirkung nicht nur in Nachbarzellen, sondern beeinflussen Zellen über weite Distanzen hinweg von ihrem Produktionsort entfernt. Dies erfordert den Transport durch den Körper oder Organismus über lange Strecken. Da die untersuchten Morphogene jedoch beide fettlöslich sind, sich daher also nicht in Wasser lösen können, war die genaue Form ihres weiten Transports bisher ein Rätsel.

Das Forschungsteam am PI-CBG hat nun gezeigt, dass sich die Morphogene Hedgehog und Wingless an andere Moleküle binden und diese als eine Art Fahrzeug benutzen – so können sie weite Distanzen überbrücken. Diese Transporter-Lipoproteine, denen die Dresdner Wissenschaftler in Anlehnung an durch den Kosmos wandernden Argonauten den Namen Argosome gegeben haben, bewegen sich dann mit ihren Gütern in andere Zellen, wo sie sich zusammen mit den Morphogenen ablagern. Die Gegenprobe hat die These untermauert: Unterdrückt man die Produktion der Argosome, sind auch die morphogenen Stoffe in ihren Zielzellen deutlich weniger vertreten.

Originalveröffentlichung:

Daniela Panakova, Hein Sprong, Eric Marois, Christoph Thiele, Suzanne Eaton
Lipoprotein particles are required for Hedgehog and Wingless signalling.
Nature, 04 May 2005

Media Contact

Dr. Andreas Trepte idw

Weitere Informationen:

http://www.mpg.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer