Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bakterien setzen Hefen und Schimmel schachmatt

01.04.2005


Dessertjoghurts mit unbehandelten Früchten sind äusserst beliebt. Doch solche naturbelassenen Früchte sind oftmals mit Hefen und Schimmeln verunreinigt. Forschende am Labor für Lebensmittel-Biotechnologie der ETH Zürich haben nun Bakterien gefunden, die solche unerwünschten Keime unterdrücken. Eine dieser Schutzkulturen ist seit kurzem auf dem Markt.



Milchsäurebakterien findet man in vielen Lebensmitteln, zum Beispiel in Joghurt, Käse oder Sauerkraut. Diese Bakterien sind erwünscht, weil sie den Geschmack und die Konsistenz eines Rohstoffs so verändern, dass ein völlig neues Lebensmittel entsteht. Bei der Käseherstellung spielen auch Propionsäurebakterien eine wichtige Rolle. Sie sind verantwortlich für die Löcher und den besonderen Geschmack von Emmentaler. In einem Projekt des Schweizerischen Nationalfonds entdeckten Forschende des Labors für Lebensmittel-Biotechnologie der ETH Zürich, dass diese beiden Bakteriengruppen noch


weitere sehr nützliche Eigenschaften haben.

Kombination von Bakterien ist wirksam


In gross angelegten Untersuchungen isolierten die ETH-Forschenden über 1000 verschiedene Bakterien aus Nahrungsmitteln. Dabei fanden sie 80 Stämme von Milchsäurebakterien und zehn Stämme von Propionsäurebakterien, die das Wachstum von Hefen und Schimmeln in Joghurt mit frischen Früchten zu unterdrücken vermochten. Eine spezifische Kombination von Milchsäure- und
Propionsäurebakterien erwies sich als besonders schlagkräftig. Diese Kultur verlängerte die Haltbarkeit von künstlich kontaminiertem Joghurt um über zwei Wochen.

Genaue Identifizierung als Grundlage für sichere Bakterienstämme

Um sicher zu sein, dass es sich bei den ausgewählten Bakterien um sichere und unbedenkliche Stämme handelt, haben die ETH-Forschenden diese genau charakterisiert und identifiziert. Sie führten dazu mikroskopische Aufnahmen und biochemische Tests durch. Weitere detaillierte molekularbiologische Untersuchungen liessen schliesslich eine sehr genaue und sichere Identifizierung zu.

Suche nach dem Wirkungsmechanismus

Von der ursprünglichen Vielzahl von Bakterienstämmen hat kürzlich eine Zweierkombination den Sprung auf den Markt geschafft. Sie wird nun als Schutzkultur vertrieben. Die Arbeit der ETH-Forschenden ist damit noch nicht beendet. In einem Folgeprojekt erforschen sie in Zusammenarbeit mit der Industrie, weshalb diese Schutzkultur so wirksam gegen Hefen und Schimmel ist. Erste Stoffwechselprodukte der Kultur konnten bereits isoliert werden, aber der genaue Mechanismus und das Zusammenspiel der beiden Stämme ist nach wie vor ein spannendes Rätsel, das die ETH-Forschenden lösen wollen.

Beatrice Miller | idw
Weitere Informationen:
http://www.sciencedirect.com/science/journal/07232020
http://www.ethz.ch

Weitere Berichte zu: Bakterium ETH-Forschende Früchte Hefe Joghurt Schutzkultur Stämme

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Zika und Gelbfieber: Impfstoffe ohne Ei
21.09.2018 | Max-Planck-Institut für Dynamik komplexer technischer Systeme Magdeburg

nachricht Einbahnstraße für das Salz
21.09.2018 | Julius-Maximilians-Universität Würzburg

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie Magnetismus entsteht: Elektronen stärker verbunden als gedacht

Wieso sind manche Metalle magnetisch? Diese einfache Frage ist wissenschaftlich gar nicht so leicht fundiert zu beantworten. Das zeigt eine aktuelle Arbeit von Wissenschaftlern des Forschungszentrums Jülich und der Universität Halle. Den Forschern ist es zum ersten Mal gelungen, in einem magnetischen Material, in diesem Fall Kobalt, die Wechselwirkung zwischen einzelnen Elektronen sichtbar zu machen, die letztlich zur Ausbildung der magnetischen Eigenschaften führt. Damit sind erstmals genaue Einblicke in den elektronischen Ursprung des Magnetismus möglich, die vorher nur auf theoretischem Weg zugänglich waren.

Für ihre Untersuchung nutzten die Forscher ein spezielles Elektronenmikroskop, das das Forschungszentrum Jülich am Elettra-Speicherring im italienischen Triest...

Im Focus: Erstmals gemessen: Wie lange dauert ein Quantensprung?

Mit Hilfe ausgeklügelter Experimente und Berechnungen der TU Wien ist es erstmals gelungen, die Dauer des berühmten photoelektrischen Effekts zu messen.

Es war eines der entscheidenden Experimente für die Quantenphysik: Wenn Licht auf bestimmte Materialien fällt, werden Elektronen aus der Oberfläche...

Im Focus: Scientists present new observations to understand the phase transition in quantum chromodynamics

The building blocks of matter in our universe were formed in the first 10 microseconds of its existence, according to the currently accepted scientific picture. After the Big Bang about 13.7 billion years ago, matter consisted mainly of quarks and gluons, two types of elementary particles whose interactions are governed by quantum chromodynamics (QCD), the theory of strong interaction. In the early universe, these particles moved (nearly) freely in a quark-gluon plasma.

This is a joint press release of University Muenster and Heidelberg as well as the GSI Helmholtzzentrum für Schwerionenforschung in Darmstadt.

Then, in a phase transition, they combined and formed hadrons, among them the building blocks of atomic nuclei, protons and neutrons. In the current issue of...

Im Focus: Der Truck der Zukunft

Lastkraftwagen (Lkw) sind für den Gütertransport auch in den kommenden Jahrzehnten unverzichtbar. Wissenschaftler und Wissenschaftlerinnen der Technischen Universität München (TUM) und ihre Partner haben ein Konzept für den Truck der Zukunft erarbeitet. Dazu zählen die europaweite Zulassung für Lang-Lkw, der Diesel-Hybrid-Antrieb und eine multifunktionale Fahrerkabine.

Laut der Prognose des Bundesministeriums für Verkehr und digitale Infrastruktur wird der Lkw-Güterverkehr bis 2030 im Vergleich zu 2010 um 39 Prozent steigen....

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

12. BusinessForum21-Kongress „Aktives Schadenmanagement"

20.09.2018 | Veranstaltungen

Gesundheitstipps und ein virtueller Tauchgang zu Korallenriffen

20.09.2018 | Veranstaltungen

Internationale Experten der Orthopädietechnik tagen in Göttingen

19.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Nervenzellen im menschlichen Gehirn können „zählen“

21.09.2018 | Biowissenschaften Chemie

CT45 – ein Schlüssel zum langfristigen Überleben beim Eierstockkrebs

21.09.2018 | Biowissenschaften Chemie

Einbahnstraße für das Salz

21.09.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics