Das kurze Gedächtnis des Wassers

Forscher des Max-Born-Instituts und der University of Toronto weisen extrem schnelle Fluktuationen in flüssigem Wasser nach – Publikation in Nature

Einen Forscherteam des Max-Born-Instituts in Berlin-Adlershof und der University of Toronto ist es erstmals gelungen, ultraschnelle Fluktuationen in der Struktur von flüssigem Wasser nachzuweisen. Die Wissenschaftler nutzten dazu neue Methoden der Femtosekunden-Schwingungsspektroskopie. Wie sie in der aktuellen Ausgabe von Nature (Bd. 434, Seite 199) berichten, geht in dem fluktuierenden Netzwerk gekoppelter Wassermoleküle das strukturelle Gedächtnis innerhalb von 50 Femtosekunden verloren, schneller als in jeder anderen Flüssigkeit. Eine Femtosekunde ist ein Millionstel einer Milliardstel Sekunde.

Wasser (H2O) ist eine der Grundlagen des Lebens auf der Erde. Es dient als Medium für die wichtigsten biologischen Vorgänge, sei es als „Lösungsmittel“ für Biomoleküle, sei es als Lieferant von Protonen für den Transport von Ladungen. Flüssiges Wasser besteht aus einem ungeordneten Netzwerk von Molekülen, das durch schwache chemische Bindungen (die so genannten Wasserstoffbrücken) zusammengehalten wird. Dieses Netzwerk unterliegt ständigen Fluktuationen, das heißt, die Anordnung der Wassermoleküle und ihre Wechselwirkung ändern sich ständig. Dabei werden Wasserstoffbrücken immer wieder gebrochen und neu geformt. Trotz intensiver Forschung ist die strukturelle Dynamik des Wassers, die wesentlich im Femtosekundenbereich abläuft, erst in Ansätzen bekannt.

In den in Berlin durchgeführten Experimenten regt ein Lichtimpuls in einem extrem dünnen Wasserfilm lokal eine molekulare Schwingung an: die Streckschwingung eines Wassermoleküls (siehe auch Animation 1). Der Wasserfilm ist 0,5 Mikrometer dünn. Zum Vergleich: Ein menschliches Haar ist hundertmal dicker. Der infrarote Lichtimpuls (Wellenlänge: 3 Mikrometer) dauert 70 fs.

Das von dem Lichtimpuls zum Schwingen angeregte Molekül dient als Sonde für die Fluktuationen des molekularen Netzwerks, die zu einer Veränderung der Schwingungsfrequenz und -phase führen. Mit dem Verfahren der „zweidimensionalen Schwingungsspektroskopie“ machen die Wissenschaftler am MBI diese Änderungen in Echtzeit sichtbar und bestimmen daraus Zeitskala und Mechanismus der Fluktuationen. Dabei zeigt sich, dass die zum Zeitpunkt der Schwingungsanregung vorliegende Struktur des Netzwerks innerhalb von zirka fünfzig Femtosekunden verloren geht, einem Zeitintervall, das viel kürzer ist als die Lebensdauer einer Wasserstoffbrücke von ungefähr tausend Fentosekunden.

Ursache des schnellen Strukturverlusts sind gehinderte Kipp- und Rotationsbewegungen der gekoppelten Moleküle, die Wissenschaftler sprechen von „Librationen“ der Wasserstoffbrücken. Diese verändern die relative Orientierung der Wassermoleküle zueinander und tragen so zum Verlust des strukturellen Gedächtnisses in der Flüssigkeit bei (Animation 2). Gleichzeitig wird auf einer etwas langsameren Zeitskala von 100 fs die anfänglich lokalisierte Schwingungsanregung auf die Nachbarmoleküle übertragen. Die ultraschnelle strukturelle Dynamik und der extrem schnelle Zerfall lokaler Anregungen sind entscheidend für die Stabilisierung von biologischen Systemen in wässriger Umgebung.

Die Ergebnisse der deutsch-kanadischen Zusammenarbeit, die von der Deutschen Forschungsgemeinschaft (Sonderforschungsbereich 450) und der Alexander-von-Humboldt-Stiftung (Humboldt-Preis für R.J.Dwayne Miller) gefördert wurden, zeigen erstmals das extrem kurze strukturelle Gedächtnis von reinem Wasser. Die Analyse dieses Verhaltens in ähnlichen Systemen, zum Beispiel in wässrigen Lösungen, und seine Bedeutung für biologische Funktionen werden Gegenstand weiterer gemeinsamer Untersuchungen sein.

Animation 1

Streckschwingung des Wassermoleküls. Ein ultrakurzer Lichtimpuls regt die asymmetrische Streckschwingung des gewinkelten Wassermoleküls an (rot: Sauerstoffatom, grau: Wasserstoffatome). Das Wassermolekül ist eingebettet in ein Netzwerk von Wasserstoffbrücken zwischen den Wasserstoffatomen und Sauerstoffatomen auf benachbarten Molekülen (kleine graue Symbole). Gezeigt sind die Auslenkungen der Atome während der Streckschwingung, eine Schwingungsperiode dauert 10 Femtosekunden. (Animation von J. Dreyer, MBI)

Hier finden Sie die Animation: www.fv-berlin.de/pm_archiv/2005/fotos/animation1.gif

Animation 2

Librationsbewegung des Wassers. Librationsbewegungen verändern die relative Orientierung der Wassermoleküle zueinander und tragen so zum Verlust des strukturellen Gedächtnisses in der Flüssigkeit bei. Eine Schwingungsperiode der gezeigten Libration dauert ungefähr 40 Femtosekunden. (Animation von J. Dreyer, MBI)

Hier finden Sie die Animation: www.fv-berlin.de/pm_archiv/2005/fotos/libration.gif

Media Contact

Josef Zens idw

Weitere Informationen:

http://www.fv-berlin.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer