Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Kein Stau am Golgi-Apparat

15.02.2005


Lokalisation von drei verschiedenen Fluoreszenz-markierten Formen des Ras-Proteins. K-Ras ist nur an der Zellmembran und N-Ras hauptsächlich am Golgi-Apparat zu finden, während H-Ras etwa gleichmäßig zwischen Zellmembran und Golgi-Apparat verteilt ist. Bild: Max-Planck-Institut für molekulare Physiologie


Zerstörung des Ras-Proteins durch einen Laserstrahl. Im Experiment wird H-Ras im Golgi-Apparat durch einen Laserstrahl ausgelöscht (vorher/nachher). Im Verlauf der nächsten 20 Minuten wird es wieder am Golgi sichtbar. Bild: Max-Planck-Institut für molekulare Physiologie


Biochemiker des Max-Planck-Instituts für molekulare Physiologie in Dortmund zeichnen erstmals die Wanderwege von Ras-Proteinen in lebenden Zellen nach


Ras-Proteine, molekulare Schalter, die bei der Zellteilung und Tumorentstehung beim Menschen eine wichtige Rolle spielen, werden in menschlichen Zellen durch schnelle Transportprozesse zwischen dem Golgi-Apparat und der Zellmembran hin und her befördert. Verantwortlich hierfür ist die reversible Modifizierung dieser Proteine durch lipophile (fettliebende) Gruppen. Das haben jetzt Wissenschaftler des Max-Planck-Instituts für molekulare Physiologie in Dortmund unter der Leitung von Prof. Alfred Wittinghofer in Zusammenarbeit mit einer Arbeitsgruppe um Dr. Philippe Bastiaens vom European Molecular Biology Laboratory (EMBL) in Heidelberg nachgewiesen. Bisher ging man davon aus, dass Ras-Proteine nur in einer Richtung vom Golgi-Apparat zur äußeren Zellmembran transportiert werden und dort verbleiben. Für ihre Entdeckung haben die Zellbiologen ein neues Prinzip zur Lokalisierung von Proteinen in verschiedenen Membranen der Zelle entwickelt. Die Forscher brachten in einem interdisziplinären Ansatz chemisch-biochemisch-biophysikalische-zellbiologische Methoden und Erfahrungen zusammen, um der lang diskutierten Frage der Lokalisation von Ras-Proteinen in Zellen auf die Spur zu kommen (Science Express, 10. Februar 2005).

Zunächst ging es darum, zu klären, wie das Protein Ras gleichzeitig in zwei verschiedenen Substrukturen der Zelle, dem Golgi-Apparat und der äußeren Hülle der Zelle, der Plasmamembran, lokalisiert sein kann. Dazu wollten die Biologen wissen, warum verschiedene Formen des Ras-Proteins in unterschiedlichen Mengen in den jeweiligen Membransystemen vorkommen. Im nicht aktivierten Zustand liegen Ras-Proteine in der "Aus"-Form vor und gehen durch ein von außerhalb der Zelle kommendes Wachstumssignal in den "An"-Zustand über. Es gibt drei verschiedenen Formen von Ras-Proteinen, die man nach ihrem Vorkommen in bestimmten tierischen oder menschlichen Tumoren H-, N- oder K-Ras bezeichnet. Ras-Proteine sind mit der Zellmembran verankert, weil sie nach der Synthese im Zytoplasma der Zelle über mehrere Zwischenstufen mit ein, zwei oder drei lipophilen (fettliebenden) Gruppen verknüpft werden und sie dadurch eine hohe Affinität für die ebenfalls lipophilen Membranen erhalten.


Gängige Lehrmeinung war, dass Ras-Proteine nach der Synthese und nach Anknüpfung der lipophilen Gruppe im Golgi-Apparat zu finden sind, weil dieses Organell beim Transport der Ras-Proteine vom endoplasmatischen Retikulum zur Zellmembran als Zwischenstation fungiert. Danach sind die im Golgi-Apparat befindlichen Ras-Proteine dort sozusagen wegen eines Verkehrsstaus lokalisiert.

Die Mitarbeiter von Bastiaens und Wittinghofer haben nun mit Hilfe von ausgefeilten mikroskopischen Techniken und unter Verwendung von fluoreszent markierten Ras-Proteinen ihre Wanderwege in lebenden Zellen untersucht. Das Team konnte zeigen, dass das bisherige Modell so nicht richtig sein kann. Dazu verhinderten die Forscher die Neusynthese des Proteins und zerstörten gleichzeitig das im Golgi-Apparat befindliche Ras-Protein durch gezielte Verwendung eines Laserstrahls. Obwohl kein neu hergestelltes Ras-Protein mehr nachgeliefert wurde, kam es erstaunlicherweise nach kurzer Zeit zu einer Wieder-Anreicherung des Proteins am Golgi. Mit Hilfe molekularer Sonden entdeckten die Biologen, dass es einen kontinuierlichen Vor- und Zurück-Transport zwischen Golgi-Apparat und Zellmembran gibt, also genau das Gegenteil von einem Verkehrsstau.

Die Biochemiker vermuteten nun, dass diese schnellen Transportprozesse zwischen den Membransystemen dadurch zustande kommen, dass die Ras-Proteine am Golgi-Apparat mit einer lipophilen Gruppe versehen und nach erfolgter Modifizierung an die Plasma-Membran transportiert werden. Nach einer bestimmten Zeit wird diese lipophile Gruppe wieder abgespalten. Dadurch können die Proteine zurückgebracht und am Golgi-Apparat neu mit der lipophilen Gruppe verknüpft werden. Je nachdem, wie lange die Anheftung oder die Abspaltung dauern, hält sich das Protein mehr oder weniger lange in dem einen oder anderen Teil der Zelle auf.

Der endgültige Beweis für diese zunächst gewagte Hypothese konnte dann durch Zusammenarbeit mit Prof. Herbert Waldmann und Dr. Jürgen Kuhlmann vom Max-Planck-Institut für molekulare Physiologie erbracht werden. Dabei wurde durch chemische Synthese eine lipophile Gruppe an das Protein gebracht, die zwar genauso aussah wie die natürliche, aber nicht mehr abgespalten werden konnte. Dieses Variante zeigte dann in der Zelle keinen geregelten Vor- und Rücktransport mehr zwischen den Membranen.

Was bedeuten diese Befunde nun für die Funktion und Lokalisation von Membranproteinen? Die Wissenschaftler konnten zeigen, dass ihr neu entdecktes Prinzip der Modifizierung durch lipophile Gruppen für alle Proteine gilt, die eine abspaltbare lipophile Gruppe tragen. Dies erlaubt der Zelle über die Ausstattung mit lipophilen Ankern die Proteine an unterschiedliche Membransysteme zu adressieren. Je nach Geschwindigkeiten der Modifizierung erfolgt dann ein geregelter Austausch zwischen diesen Membransystemen.

Für die Signalweiterleitung mit Hilfe des Ras-Proteins bedeutet das zunächst, dass die verschiedenen Formen von Ras, die auch in verschiedener Weise an der Tumorentstehung beim Menschen beteiligt sind, sich über ihre spezifische Modifikation in ihren zugehörigen Membranstrukturen aufhalten. "Unsere Befunde erklären wahrscheinlich auch, warum in der Zelle zunächst das in der Zellmembran lokalisierte Ras-Protein durch das von außen kommende Wachstumssignal aktiviert wird und dann das aktivierte Ras-Protein in die Golgi-Membran transportiert werden kann", sagt Alfred Wittinghofer. "Die unterschiedliche Lokalisation bewirkt dann, dass dort Ras-Proteine andere biologische Wirkungen hervorrufen als Ras-Proteine in der äußeren Membran der Zelle."

Mit ihren Untersuchungen ist den Arbeitsgruppen damit ein wichtiger Schritt gelungen, das komplexe Muster der Signalweiterleitung von und die Unterschiede zwischen den Ras-Proteinen in lebenden Zellen zu erklären Die Studie wird auch dazu beitragen zu verstehen, warum unterschiedliche Ras-Proteine beim Menschen unterschiedliche Tumore hervorrufen.

Originalveröffentlichung:

O. Rocks, M. Kahms, C. Koerner, M. Lumbierres, J. Kuhlmann, H. Waldman and A. Wittinghofer
A De-/Reacylation Cycle Regulates Localisation and Activity of Palmitoylated Ras isoforms
Science Express, 10 February 2005

Dr. Andreas Trepte | Max-Planck-Gesellschaft
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Golgi-Apparat Membran Protein Ras-Protein Zelle Zellmembran

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Unordnung kann Batterien stabilisieren
18.09.2018 | Karlsruher Institut für Technologie

nachricht Mit Nano-Lenkraketen Keime töten
17.09.2018 | Universität Duisburg-Essen

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Extrem klein und schnell: Laser zündet heißes Plasma

Feuert man Lichtpulse aus einer extrem starken Laseranlage auf Materialproben, reißt das elektrische Feld des Lichts die Elektronen von den Atomkernen ab. Für Sekundenbruchteile entsteht ein Plasma. Dabei koppeln die Elektronen mit dem Laserlicht und erreichen beinahe Lichtgeschwindigkeit. Beim Herausfliegen aus der Materialprobe ziehen sie die Atomrümpfe (Ionen) hinter sich her. Um diesen komplexen Beschleunigungsprozess experimentell untersuchen zu können, haben Forscher aus dem Helmholtz-Zentrum Dresden-Rossendorf (HZDR) eine neuartige Diagnostik für innovative laserbasierte Teilchenbeschleuniger entwickelt. Ihre Ergebnisse erscheinen jetzt in der Fachzeitschrift „Physical Review X“.

„Unser Ziel ist ein ultrakompakter Beschleuniger für die Ionentherapie, also die Krebsbestrahlung mit geladenen Teilchen“, so der Physiker Dr. Thomas Kluge vom...

Im Focus: Bio-Kunststoffe nach Maß

Zusammenarbeit zwischen Chemikern aus Konstanz und Pennsylvania (USA) – gefördert im Programm „Internationale Spitzenforschung“ der Baden-Württemberg-Stiftung

Chemie kann manchmal eine Frage der richtigen Größe sein. Ein Beispiel hierfür sind Bio-Kunststoffe und die pflanzlichen Fettsäuren, aus denen sie hergestellt...

Im Focus: Patented nanostructure for solar cells: Rough optics, smooth surface

Thin-film solar cells made of crystalline silicon are inexpensive and achieve efficiencies of a good 14 percent. However, they could do even better if their shiny surfaces reflected less light. A team led by Prof. Christiane Becker from the Helmholtz-Zentrum Berlin (HZB) has now patented a sophisticated new solution to this problem.

"It is not enough simply to bring more light into the cell," says Christiane Becker. Such surface structures can even ultimately reduce the efficiency by...

Im Focus: Mit Nano-Lenkraketen Keime töten

Wo Antibiotika versagen, könnten künftig Nano-Lenkraketen helfen, multiresistente Erreger (MRE) zu bekämpfen: Dieser Idee gehen derzeit Wissenschaftler der Universität Duisburg-Essen (UDE) und der Medizinischen Hochschule Hannover nach. Zusammen mit einem führenden US-Experten tüfteln sie an millionstel Millimeter kleinen Lenkraketen, die antimikrobielles Silber zielsicher transportieren, um MRE vor Ort zur Strecke zu bringen.

In deutschen Krankenhäusern führen die MRE jährlich zu tausenden, teils lebensgefährlichen Komplikationen. Denn wer sich zum Beispiel nach einer Implantation...

Im Focus: Schaltung des Stromflusses auf atomarer Skala

Forscher aus Augsburg, Trondheim und Zürich weisen gleichrichtende Eigenschaften von Grenzflächenkontakten im ferroelektrischen Halbleiter nach.

Die Grenzflächen zwischen zwei elektrisch unterschiedlich polarisierten Bereichen im Festkörper werden als ferroelektrische Domänenwände bezeichnet. In der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungen

Unbemannte Flugsysteme für die Klimaforschung

18.09.2018 | Veranstaltungen

Studierende organisieren internationalen Wettbewerb für zukünftige Flugzeuge

17.09.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Auf der InnoTrans 2018 mit innovativen Lösungen für den Güter- und Personenverkehr

18.09.2018 | Messenachrichten

Von den Grundlagen bis zur Anwendung - Internationale Elektrochemie-Tagung in Ulm

18.09.2018 | Veranstaltungsnachrichten

Extrem klein und schnell: Laser zündet heißes Plasma

18.09.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics