Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

SCIENCE: Barthaare weisen Seehunden den Weg

06.07.2001


Barthaare weisen Seehunden den Weg


Neues Unterwasser-Orientierungssystem entdeckt
Wahrnehmung hydrodynamischer Spuren


Mit ihren Barthaaren (Vibrissen) können Robben sich in trüben Gewässern orientieren: Sie sind in der Lage, winzige Wasserbewegungen, die von bewegten Körpern unter Wasser ausgehen, über Distanzen bis zu 40 Metern zu verfolgen. Diese erstaunliche Fähigkeit der marinen Säugetiere wiesen Biologen der Ruhr-Universität (PD Dr. Guido Dehnhardt, Allgemeine Zoologie und Neurobiologie) in Zusammenarbeit mit Forschern der Universität Bonn (Prof. Dr. Horst Bleckmann, Abteilung für Vergleichende Neurobiologie) jetzt in Verhaltensexperimenten nach. Über ihre Funde berichtet das Wissenschaftsmagazin SCIENCE in seiner Ausgabe vom 5. Juli.

Mit ihren Barthaaren (Vibrissen) können Robben sich in trüben Gewässern orientieren: Sie sind in der Lage, winzige Wasserbewegungen, die von bewegten Körpern unter Wasser ausgehen, über Distanzen bis zu 40 Metern zu verfolgen. Diese erstaunliche Fähigkeit der marinen Säugetiere wiesen Biologen der Ruhr-Universität (PD Dr. Guido Dehnhardt, Allgemeine Zoologie und Neurobiologie) in Zusammenarbeit mit Forschern der Universität Bonn (Prof. Dr. Horst Bleckmann, Abteilung für Vergleichende Neurobiologie) jetzt in Verhaltensexperimenten nach. Über ihre Funde berichtet das Wissenschaftsmagazin SCIENCE in seiner Ausgabe vom 5. Juli.

Im Trüben fischen ...

Ebenso wie andere marine Säuger leben Robben häufig in Gewässern, in denen die Sicht durch Dunkelheit oder Trübung begrenzt ist. Während Zahnwale diese Einschränkung in der Sichtweite offensichtlich durch aktive Echoortung als Fernerkundungssystem kompensieren können, konnten Wissenschaftler diese Fähigkeit bei Robben trotz intensiver Studien nie nachweisen; sie nahmen bisher an, dass Seehunde und Seelöwen sich neben dem begrenzten Einsatz ihrer Augen hauptsächlich durch ihr passives Gehör in den Ozeanen orientieren und Beute machen.

... mit genauer Ortung

Allein auf Augen und Ohren beschränken sie sich jedoch nicht: Sie nutzen zur Ortung bewegter Objekte unter Wasser ihr Vibrissensystem. Mit ihren Barthaaren können sie - ähnlich wie Fische mit ihrem Seitenliniensystem - Wasserbewegungen in der Größenordnung von weniger als ein Tausendstel Millimeter wahrnehmen. Solche Wasserbewegungen, die etwa von den Schwimmbewegungen eines Fisches ausgehen, manifestieren sich als stabile hydrodynamische Spuren; ihre Form ist die von strickleiterartig angeordneten, gegenläufigen Wirbeln. "Die Strömungsspur eines Goldfischs lässt sich selbst mit relativ einfachen Methoden im Labor noch nach fünf Minuten nachweisen", erklärt Bleckmann.

Robben mit Strumpfmaske und Kopfhörern

Der Nachweis dieser Fähigkeit gelang den Forschern in Verhaltensexperimenten mit zwei Seehunden. Ein autonom laufendes Mini-U-Boot, das in ihrer Nähe gestartet wurde, erzeugte hydrodynamische Spuren, sowohl gerade als auch welche mit Kurven. "Wir stationierten die Versuchstiere zunächst in einem Ring über Wasser. Damit sie das U-Boot weder sehen noch hören konnten, setzten wir ihnen undurchsichtige Strumpfmasken und Kopfhörer auf", erläutert Dr. Dehnhardt den Versuchsablauf. Nachdem das U-Boot einige Sekunden lang auf einem nicht vorhersehbaren Kurs gefahren war, schaltete es sich ab und trieb lautlos im Wasser. Das Absetzen der Kopfhörer war für die Seehunde das Startsignal. Immer noch mit der Maske geblendet, verließen sie den Stationierungsring, tauchten langsam ab und suchten nach der Spur des U-Boots. Sobald sie sie kreuzten, zeigte ein deutlicher Richtungswechsel in ihrem Schwimmverhalten, dass sie die Spur gefunden hatten und ihr jetzt folgten. "Analysen von Video-Aufnahmen bestätigen, dass die Tiere die Richtung des U-Boots stets richtig bestimmten und jede kleine Kursänderung genau verfolgten", so Dehnhardt. "Lief dagegen der Motor des U-Boots noch, wenn den Robben die Kopfhörer abgenommen wurden, orientierten sie sich am Klang und schwammen direkt auf die Schallquelle zu", erklärt Zoologie-Professor Bleckmann, der die Bonner Abteilung für vergleichende Neurobiologie leitet. "Die Orientierung erfolgt in der Realität multimodal, also mit den Ohren, der Nase und den Vibrissen."

Impulse für die weitere Forschung

Dehnhardt und Bleckmann sind überzeugt, dass die Entdeckung der Forschung neue Impulse geben wird: "Unsere Versuche zur Verfolgung hydrodynamischer Spuren demonstrieren ein völlig neues Orientierungssystem für den aquatischen Lebensraum. Die Nutzung einer bisher unvermuteten Sinnesqualität zur Orientierung mariner Säuger öffnet damit die Tür zu einem sehr spannenden Forschungsfeld."

Weitere Informationen

PD Dr. Guido Dehnhardt, Allgemeine Zoologie und Neurobiologie, Fakultät für Biologie der Ruhr-Universität Bochum, 44780 Bochum, Tel. 0234/32-27709, Fax: 0234/32-14278, E-Mail: dehnhardt@neurobiologie.ruhr-uni-bochum.de

Prof. Dr. Horst Bleckmann, Abteilung für Vergleichende Neurobiologie, Rheinische Friedrich-Wilhelms-Universität Bonn, 53113 Bonn, Tel.: 0228/73-5453, Fax: 0228/73-5458, E-Mail: bleckmann@uni-bonn.de

Dr. Josef König | idw

Weitere Berichte zu: Neurobiologie Robben Wasserbewegungen

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forschung gegen das Corona-Virus – Gewebemodelle für schnelle Wirkstofftests
08.04.2020 | Fraunhofer-Institut für Silicatforschung ISC

nachricht Mutation senkt Energieverschwendung bei Pflanzen
08.04.2020 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Innovative Technologien für Satelliten

Er kommt ohne Verkabelung aus und seine tragende Struktur ist gleichzeitig ein Akku: An einem derart raffiniert gebauten Kleinsatelliten arbeiten Forschungsteams aus Braunschweig und Würzburg. Für 2023 ist das Testen des Kleinsatelliten im Orbit geplant.

Manche Satelliten sind nur wenig größer als eine Milchtüte. Dieser Bautypus soll jetzt eine weiter vereinfachte Architektur bekommen und dadurch noch leichter...

Im Focus: The human body as an electrical conductor, a new method of wireless power transfer

Published by Marc Tudela, Laura Becerra-Fajardo, Aracelys García-Moreno, Jesus Minguillon and Antoni Ivorra, in Access, the journal of the Institute of Electrical and Electronics Engineers

The project Electronic AXONs: wireless microstimulators based on electronic rectification of epidermically applied currents (eAXON, 2017-2022), funded by a...

Im Focus: Belle II liefert erste Ergebnisse: Auf der Suche nach dem Z‘-Boson

Vor ziemlich genau einem Jahr ist das Belle II-Experiment angelaufen. Jetzt veröffentlicht das renommierte Journal Physical Review Letters die ersten Resultate des Detektors. Die Arbeit befasst sich mit einem neuen Teilchen im Zusammenhang mit der Dunklen Materie, die nach heutigem Kenntnisstand etwa 25 Prozent des Universums ausmacht.

Seit etwa einem Jahr nimmt das Belle II-Experiment Daten für physikalische Messungen. Sowohl der Elektron-Positron-Beschleuniger SuperKEKB als auch der...

Im Focus: Belle II yields the first results: In search of the Z′ boson

The Belle II experiment has been collecting data from physical measurements for about one year. After several years of rebuilding work, both the SuperKEKB electron–positron accelerator and the Belle II detector have been improved compared with their predecessors in order to achieve a 40-fold higher data rate.

Scientists at 12 institutes in Germany are involved in constructing and operating the detector, developing evaluation algorithms, and analyzing the data.

Im Focus: Wenn Ionen an ihrem Käfig rütteln

In vielen Bereichen spielen „Elektrolyte“ eine wichtige Rolle: Sie sind bei der Speicherung von Energie in unserem Körper wie auch in Batterien von großer Bedeutung. Um Energie freizusetzen, müssen sich Ionen – geladene Atome – in einer Flüssigkeit, wie bspw. Wasser, bewegen. Bisher war jedoch der präzise Mechanismus, wie genau sie sich durch die Atome und Moleküle der Elektrolyt-Flüssigkeit bewegen, weitgehend unverstanden. Wissenschaftler*innen des Max-Planck-Instituts für Polymerforschung haben nun gezeigt, dass der durch die Bewegung von Ionen bestimmte elektrische Widerstand einer Elektrolyt-Flüssigkeit sich auf mikroskopische Schwingungen dieser gelösten Ionen zurückführen lässt.

Kochsalz wird in der Chemie auch als Natriumchlorid bezeichnet. Löst man Kochsalz in Wasser lösen sich Natrium und Chlorid als positiv bzw. negativ geladene...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Aachener Werkzeugmaschinen-Kolloquium AWK’21 findet am 10. und 11. Juni 2021 statt

06.04.2020 | Veranstaltungen

Interdisziplinärer Austausch zum Design elektrochemischer Reaktoren

03.04.2020 | Veranstaltungen

13. »AKL – International Laser Technology Congress«: 4.–6. Mai 2022 in Aachen – Lasertechnik Live bereits früher!

02.04.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Kleine Flugplätze durch Virtual Reality unterstützen

08.04.2020 | Verkehr Logistik

Forschung gegen das Corona-Virus – Gewebemodelle für schnelle Wirkstofftests

08.04.2020 | Biowissenschaften Chemie

Kostengünstiges mobiles Beatmungsgerät entwickelt

08.04.2020 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics