Neuartiger Katalysator für flüchtige organische Verbindungen

Eine poröse Chromoxidstruktur kann flüchtige organische Verbindungen aufnehmen und ihre Zersetzung zu Kohlendioxid katalysieren

Flüchtige organische Verbindungen (Volatile Organic Compounds – VOCs) wie Toluol oder Acetaldehyd stellen eine Gefahr für die Umwelt dar. Deshalb müssen sie aus der Abluft von Industrieanlagen restlos entfernt werden. Dies geschieht meist durch Adsorption , Rückgewinnung und anschließende katalytische Verbrennung. Als Katalystoren hierfür dienen oft Sauerstoffverbindungen der Metalle Mangan, Chrom, Kupfer oder Kobalt. Jetzt haben Forscher in Japan erstmals ein Material entwickelt, das beides kann: VOCs anlagern und ihre Oxidation zu Kohlendioxid katalysieren.

A. K. Sinha und K. Suzuki synthetisierten ein dreidimensionales kubisches Netzwerk aus Chromoxid wobei das Chrom in Oxidationsstufen von +2 bis +6 (Cr+6 ~ 4%) vorliegt. Die durchschnittliche Porengröße beträgt 7,9 nm und die Wandstärke von 13,3 nm; sie liegen im Bereich zwischen Mikrometern (1 µm = ein tausendstel Millimeter) und Nanometern (1 nm = ein Millionstel Millimeter). Das Material wird deshalb als mesoporöses Chromoxid bezeichnet (mesos ist das griechische Wort für mittleres, mitten zwischen). Die Forscher erzeugten diese mesoporöse Struktur, indem sie Chromsalze in Gegenwart eines speziellen Polymers, das als Schablone diente, langsam aus einem organischen Lösungsmittelgemisch auskristallisieren ließen. Durch Erhitzen des so erhaltenen Materials auf Temperaturen über von 400 °C konnten sie die Schablone anschließend vollständig entfernen.

Mesoporöses Chromoxid ist die erste bekannte Substanz, die VOCs bei Raumtemperatur nicht nur adsorbiert, sondern bereits unter diesen milden Bedingungen ihre Zersetzung katalysiert. So wurde beispielsweise Toluol innerhalb von 25 Stunden bei Raumtemperatur zu 52 % abgebaut, Acetaldehyd sogar zu 94 %. Eine Temperaturerhöhung auf 85 °C zerstörte 65 % des Toluols, oberhalb von 280 °C wurde Toluol zu 100 % entfernt. Durch Erhitzen auf 350 °C werden alle eventuell noch vorhandenen Reste von VOCs oxidiert, der Katalysator ist regeneriert und steht für den nächsten Einsatz bereit.

Kontakt:

Dr. A. K. Sinha
Toyota Central R&D Labs., Inc.
41-1 Aza, Yokomichi, Nagakute-cho, Aichi-gun, Aichi-ken 480 1192
Japan
Tel.: (+81) 561-63-7683
Fax: (+33) 561-63-6156
E-mail: sinha-anil@mosk.tytlabs.co.jp

Media Contact

Dr. Renate Hoer idw

Weitere Informationen:

http://www.angewandte.de

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer