Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ein Wassermolekül als Schutzschild

12.11.2004


Ein einzelnes Wassermolekül ist dafür verantwortlich, dass die Bindung der Zelle an die extrazelluläre Matrix stabil ist und unter mechanischer Krafteinwirkung nicht sofort zerreisst. Dies zeigt eine ETH-Forscherin mit ihrem Team in einer Arbeit über Integrine. Diese Transmembranproteine verankern Zellen in ihrer Umgebung. Die Arbeit ist in der aktuellen Ausgabe der Zeitschrift "Structure" veröffentlicht.

... mehr zu:
»RGD-Peptid »Wassermolekül »Zelle

Wie zerreisst die Bindung zwischen einer Zelle und ihrer Umgebung? Wie kommt es dazu, dass gewisse Zellen im ganzen Körper wandern können wie zum Beispiel Krebszellen bei der Bildung von Metastasen? Schon seit einiger Zeit ist bekannt, dass zwischen Zellen und ihrer Umgebung komplexe mechanische Wechselwirkungen ablaufen. Nicht nur die biochemischen, sondern auch die physikalischen Eigenschaften der Zellumgebung haben einen tiefgreifenden Effekt auf das Verhalten der Zelle und letztendlich auch auf die Genexpression. Die ETH-Materialwissenschafterin Viola Vogel untersuchte gemeinsam mit Kollegen, wie die Bindung zwischen den Proteinen, welche die Zellen in ihrer Umgebung verankern, zerreisst, wenn mechanische Kräfte auf sie einwirken. In der aktuellen Ausgabe der Zeitschrift "Structure" zeigen die Forschenden, dass ein einziges Wassermolekül als "Schutzschild" funktioniert. Es schirmt die Bindung zwischen Zelle und extrazellulärer Matrix vor Attacken freier Wassermoleküle ab und schütz sie so vor dem vorzeitigen Zerreissen.

Mit Computersimulationen erstmals dynamisches Bild


Integrine sind Proteine, welche die Zellmembran durchqueren. Sie verankern die Zellen mittels kurzer Tripeptide, sogenannten RGD-Peptiden, in der extrazellulären Matrix. Die Bindung der Integrine an die RGD-Peptide läuft dabei via zweifach positiv geladene Salz-Ionen, zum Beispiel Kalzium oder Mangan. Die Forschenden testeten die Wirkung mechanischer Kräfte auf diese Bindung anhand von Computersimulationen. In einen Behälter, der mit Wassermolekülen gefüllt war, platzierten sie die bekannte Kristallstruktur jener Integrin-Abschnitte, welche die RGD-Peptide binden. Dann zogen sie am RGD-Peptid. Diese Art von Simulationen ermöglicht es, die Bewegungen aller Wassermoleküle und Atome des Proteinkomplexes unter der Wirkung mechanischer Kräfte zu verfolgen. Auf diese Weise gewannen die Forschenden erstmals ein dynamisches Bild davon, wie der RGD-Peptid-Integrin-Komplex der Trennung durch mechanische Kräfte widersteht. Dabei fanden die Forschenden heraus, dass ein einzelnes Wassermolekül wesentlich zur Stabilität dieser Bindung beiträgt. Es ist eng an das Kalzium- oder Mangan-Ion gebunden. Dadurch verhindert das fest gebundene Wassermolekül, dass freie Wassermoleküle Zugang zur der entscheidenden Bindung zwischen Integrin und den RGD-Peptiden erhalten und diese unter Krafteinwirkung reisst.

Weitreichende Bedeutung

Bisher waren nur die regulierenden Funktionen von Kationen in vielen biologischen Prozessen bekannt. Die in der aktuellen Ausgabe von "Structure" publizierten Erkenntnisse zeigen neu die strukturellen Ursachen, wie die Interaktionen von Zellen mit ihrer Umgebung stabilisiert werden. Sie haben deshalb weitreichende Bedeutung; insbesondere für die Entwicklung von Medikamenten oder für das Verständnis, wie Zellen am umgebenden Gewebe anhaften oder wie sie sich loslösen, wandern und - beispielsweise im Falle von Krebsgeschwüren - neue Blutgefässe bilden.

Beatrice Miller | idw
Weitere Informationen:
http://www.structure.org
http://www.nanomat.mat.ethz.ch

Weitere Berichte zu: RGD-Peptid Wassermolekül Zelle

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen
20.07.2018 | Universitätsklinikum Heidelberg

nachricht Erwiesen: Mücken können tropisches Chikungunya-Virus auch bei niedrigen Temperaturen verbreiten
20.07.2018 | Bernhard-Nocht-Institut für Tropenmedizin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics