Nano-Nadel für die Injektion von Genen?

Kohlenstoffnanoröhrchen schleusen DNA in Zellen ein – ein neuer Ansatz für die Gentherapie?

Viele Gene, die mit bestimmten Erkrankungen im Zusammenhang stehen, sind mittlerweile bekannt. Die Wissenschaft arbeitet daran, dieses Wissen zur Heilung von Krankheiten nutzbar zu machen. Man stellt sich vor, fehlerhafte oder fehlende Gene zu ersetzen, indem das betreffende Gen den Körperzellen von außen zugeführt wird. Das ist gar nicht so einfach, denn das Erbmolekül DNA tritt nicht so ohne weiteres durch Zellmembranen hindurch, sondern braucht einen Transporter, z.B. Viren, Liposomen oder spezielle Peptide. Ein europäisches Team von Wissenschaftlern hat nun einen neuen Ansatz entwickelt: Es ist ihnen gelungen, DNA mithilfe modifizierter Kohlenstoffnanoröhrchen in Säugetierzellen einzuschleusen.

Kohlenstoffnanoröhrchen sind winzige nadelförmige Gebilde, die nur aus Kohlenstoffatomen bestehen. Man kann sie sich als eine oder mehrere Lagen einer aufgerollten Graphitschicht vorstellen. Inzwischen sind sie, neben technischen Anwendungen, auch als Materialien für die Biomedizin ins Zentrum des Interesses gerückt.

Um als Gen-Transporter zu funktionieren, müssen die winzigen „Nadeln“ aber erst ein wenig verändert werden: Das italienisch-französisch-britische Team um Alberto Bianco (Straßburg), Kostas Kostarelos (London) und Maurizio Prato (Triest) verband mehrere Ketten aus Kohlenstoff- und Sauerstoffatomen mit der Außenseite der 20 nm dünnen, 200 nm langen Kohlenstoffnanoröhrchen. Die Kettenenden bestehen jeweils aus einer positiv geladenen Aminogruppe (-NH3+). Diese Modifikation macht die winzigen Nadeln wasserlöslich. Vor allen Dingen wirken die geladenen Gruppen aber sehr anziehend auf die negativ geladenen Phosphatgruppen von DNA-Rückgraten. Mithilfe dieser elektrostatischen Anziehungskräfte gelang es den Wissenschaftlern, Plasmide, das sind kleine ringförmige DNA-Stücke aus Bakterien, fest an der Außenseite der Nanoröhrchen zu verankern. Dann brachten sie die DNA-Nanoröhrchen-Hybride mit einer Zellkultur aus Säugetierzellen in Kontakt. Und siehe da: Die Kohlenstoffnanoröhrchen gelangten mitsamt ihrer DNA-Fracht in die Zellen hinein. Elektronenmikroskopische Aufnahmen dünner Zellschnitte zeigen sogar, wie sich die feinen Nädelchen durch die Zellmembran fädeln. Dabei sind sie kaum giftig für die Zellen, da sie, im Gegensatz zu einigen herkömmlichen Gentransportsystemen, die Membran während des Durchtritts nicht destabilisieren. Die eingeschleusten Gene erwiesen sich in der Zelle als funktionstüchtig.

Kohlenstoffnanoröhrchen können aber nicht nur Gene transportieren. Mithilfe anderer Modifikationen könnten auch andere Therapeutika angeknüpft und in Zellen eingeschleust werden.

Kontakt:

Dr. A. Bianco
Institut de Biologie Moléculaire et Cellulaire
UPR9021 CNRS
Immunologie et Chimie Thérapeutiques
F-67084 Strasbourg, Frankreich
Tel.: (+33) 388-417-088
Fax: (+33) 388-610-680
E-mail: A.Bianco@ibmc.u-strasbg.fr

Media Contact

Dr. Renate Hoer idw

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie

Der innovations-report bietet im Bereich der "Life Sciences" Berichte und Artikel über Anwendungen und wissenschaftliche Erkenntnisse der modernen Biologie, der Chemie und der Humanmedizin.

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Bakteriologie, Biochemie, Bionik, Bioinformatik, Biophysik, Biotechnologie, Genetik, Geobotanik, Humanbiologie, Meeresbiologie, Mikrobiologie, Molekularbiologie, Zellbiologie, Zoologie, Bioanorganische Chemie, Mikrochemie und Umweltchemie.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer