Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Spermium sorgt für erste Ordnung im Embryo

08.09.2004


Die erste Körperachse im Wurms C. elegans wird bereits im einzelligen Embryo definiert. Die vordere Hemisphäre (im Diagramm rot) wird zur Außenseite des Wurms; die hintere Region (im Diagramm blau und mit einem fluoreszierenden Protein markiert) zur Innenseite. Bild: Max-Planck-Institut für molekulare Zellbiologie und Genetik


Die hintere Domäne im C. elegans-Embryo verbreitet sich von der Position des Zentrosoms aus, dem schmalen, mit roten Pfeilen markierten Punkt. Die Grenzen der expandierenden Domäne sind mit blauen Pfeilspitzen gekennzeichnet (linke Bildreihe). Wird das Zentrosom zerstört, ("x" in der rechten Reihe), bildet sich die hintere Domäne nicht aus. Bild: Max-Planck-Institut für molekulare Zellbiologie und Genetik


Der Zentrosom-Komplex des Spermiums löst auf bisher unbekannte Weise die Bildung der ersten Körperachse im Embryo aus, berichten Dresdner Max-Planck-Forscher


Die rechtzeitige räumliche Organisation des Körpers ist für viele Lebewesen wichtige Voraussetzung für die korrekte Entwicklung von Geweben und Organen. Beim Fadenwurm C. elegans polarisiert sich die befruchtete Eizelle sehr rasch nach der Befruchtung in einen Vorder- und Hinterpol entlang einer ersten Körperachse. Wissenschaftler des Max-Planck-Instituts für molekulare Zellbiologie und Genetik in Dresden haben jetzt herausgefunden, dass bei der Herausbildung der beiden Hemisphären das Zentrosom eine entscheidende Rolle spielt - und zwar unabhängig von seiner Rolle als Organisator der Mikrotubuli. Vom Zentrosom kommt das Startsignal für die räumliche Organisation des Embryos, ein möglicherweise schon sehr früh in der Evolution konservierter, bei vielen Arten bestehender Mechanismus (Nature, 2. September 2004).

Was legt bei Tieren fest, wo der Kopf- und der Schwanzteil entsteht? Die Ausbildung der Körperachsen ist ein fundamentales Problem in der Entwicklungsbiologie. Die Entscheidungen dazu werden früh im tierischen Embryo getroffen, doch auf welche Weise zum Beispiel die vordere und die hintere Hemisphäre definiert werden, ist weiterhin unbekannt. Der kleine Fadenwurm C. elegans hat in den vergangenen 20 Jahren eine Reihe von neuen Erkenntnissen dazu geliefert, wie sich die Körperachsen ausbilden. So wird die erste Achse noch im einzelligen Embryo festgelegt, etwa 30 Minuten nach der Befruchtung, wenn sich zwei unterschiedliche Bereiche herauszubilden beginnen. Diese bilden dann die beiden Hemisphären des ovalen Embryos und bestimmen die zukünftige Entwicklung des Wurminneren bzw. -äußeren.

Doch eine wichtige Frage blieb bisher unbeantwortet, nämlich wodurch die Achse spezifiziert wird, an der entlang sich die Bereiche ausbilden. Man weiß inzwischen, dass das Spermium eine wichtige Rolle in diesem Prozess spielt, da der Ort der Befruchtung ganz spezifisch mit der Position einer der beiden Domänen übereinstimmt. Das Sperma des Wurms ist relativ einfach aufgebaut und trägt zwei für die Entwicklung des Embryos bedeutsame Teile bei: den Zellkern und damit die väterlichen Gene, und das Zentrosom, eine zierliche Fass-ähnliche Struktur, die später dazu dient, die meisten der Bestandteile in der Zelle zu organisieren. Da sich bei Mutanten, denen der Kern des Spermiums fehlt, die Vorder-Hinter-Achse normal ausbildet, vermutet man, dass das Zentrosom der Hautbeitrag des Spermiums zur räumlichen Organisation des Embryos ist.

Carrie Cowan und Tony Hyman vom Max-Planck-Institut für molekulare Zellbiologie und Genetik haben diese Vermutung nun direkt getestet. Sie benutzten einen genau definierten Laserstrahl, um das Zentrosom zu zerstören, bevor sich die Körperachsen im einzelligen Embryo von C. elegans ausbilden konnten. In diesem Fall bildeten sich die Achsen gar nicht aus und die Zelle zeigte typische Eigenschaften nur einer der Domänen, nämlich des Vorderpols.

Als die Forscher im Embryo des Wurms in Echtzeit beobachteten, wie sich die Domänen herausbilden, wurde klar, dass sich die hintere Domäne normalerweise von der Stelle aus entwickelt, wo sich eigentlich das Zentrosom in der Zelle befindet. Die Wissenschaftler zerstörten daraufhin mit Laser-Ablation das Zentrosom während und nach der Ausbildung der hinteren Domäne. Doch das Fehlen des Zentrosoms hatte keinerlei Wirkungen auf die Ausbreitung bzw. den Erhalt der beiden Domänen. Folglich scheint die Herausbildung der ersten Körperachse durch ein vorübergehendes räumliches Signal diktiert zu werden, das vom Zentrosom ausgeht.

Bisher ist das Zentrosom bekannt als das Organisationszentrum des Mikrotubuli-Netzwerkes (Spindelapparat) in der Zelle, und die Mikrotubuli-Spindeln organisieren wiederum die meisten der Zellbestandteile. Die Forscher testeten nun, ob diese Funktion tatsächlich für die Ausbildung der beiden Domänen erforderlich ist. Doch die genetische bzw. chemische Eliminierung der Mikrotubuli aus dem einzelligen Embryo von C. elegans hatte keinerlei Auswirkung auf die Ausbildung der Körperachse. Die Funktion des Zentrosoms in der Entwicklung der Körperachsen scheint also unabhängig zu sein von seiner sonstigen Rolle als Organisationszentrum der Mikrotubuli. Das bedeutet, dass Zentrosome über eine von den Mikrotubuli unabhängige Funktion verfügen, räumliche Signale abzugeben, die Zellen dazu bringen, funktional unterschiedliche Regionen zu bilden.

Dr. Andreas Trepte | idw
Weitere Informationen:
http://www.mpg.de

Weitere Berichte zu: Embryo Körperachse Körperachsen Spermium Zelle Zentrosom

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen
20.07.2018 | Universitätsklinikum Heidelberg

nachricht Erwiesen: Mücken können tropisches Chikungunya-Virus auch bei niedrigen Temperaturen verbreiten
20.07.2018 | Bernhard-Nocht-Institut für Tropenmedizin

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: Rostocker Forscher entwickeln autonom fahrende Kräne

Industriepartner kommen aus sechs Ländern

Autonom fahrende, intelligente Kräne und Hebezeuge – dieser Ingenieurs-Traum könnte in den nächsten drei Jahren zur Wirklichkeit werden. Forscher aus dem...

Im Focus: Superscharfe Bilder von der neuen Adaptiven Optik des VLT

Das Very Large Telescope (VLT) der ESO hat das erste Licht mit einem neuen Modus Adaptiver Optik erreicht, die als Lasertomografie bezeichnet wird – und hat in diesem Rahmen bemerkenswert scharfe Testbilder vom Planeten Neptun, von Sternhaufen und anderen Objekten aufgenommen. Das bahnbrechende MUSE-Instrument kann ab sofort im sogenannten Narrow-Field-Modus mit dem adaptiven Optikmodul GALACSI diese neue Technik nutzen, um Turbulenzen in verschiedenen Höhen in der Erdatmosphäre zu korrigieren. Damit ist jetzt möglich, Bilder vom Erdboden im sichtbaren Licht aufzunehmen, die schärfer sind als die des NASA/ESA Hubble-Weltraumteleskops. Die Kombination aus exquisiter Bildschärfe und den spektroskopischen Fähigkeiten von MUSE wird es den Astronomen ermöglichen, die Eigenschaften astronomischer Objekte viel detaillierter als bisher zu untersuchen.

Das MUSE-Instrument (kurz für Multi Unit Spectroscopic Explorer) am Very Large Telescope (VLT) der ESO arbeitet mit einer adaptiven Optikeinheit namens GALACSI. Dabei kommt auch die Laser Guide Stars Facility, kurz ...

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Stadtklima verbessern, Energiemix optimieren, sauberes Trinkwasser bereitstellen

19.07.2018 | Veranstaltungen

Innovation – the name of the game

18.07.2018 | Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Anwendungen für Mikrolaser in der Quanten-Nanophotonik

20.07.2018 | Physik Astronomie

Need for speed: Warum Malaria-Parasiten schneller sind als die menschlichen Abwehrzellen

20.07.2018 | Biowissenschaften Chemie

Die Gene sind nicht schuld

20.07.2018 | Medizin Gesundheit

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics